图表示学习 Graph Representation Learning chapter1 引言

图表示学习 Graph Representation Learning chapter1 引言

  • 前言
  • 1.1图的定义
    • 1.1.1多关系图
    • 1.1.2特征信息
  • 1.2机器学习在图中的应用
    • 1.2.1 节点分类
    • 1.2.2 关系预测
    • 1.2.3 聚类和组织检测
    • 1.2.4 图分类、回归、聚类

前言

虽然我并不研究图神经网络,但是我认为图高效的表示方式还是值得所有人去学一下的,或许将来觉得这个很有意思呢?

当然啦,这也作为北京大学 图神经网络这门课的课程笔记吧,希望各位批评指教,也希望大家一起进步。

1.1图的定义

在这里插入图片描述
图可以定义为如下结构 G = ( V , E ) \mathcal{G=(V, E)} G=(V,E)
包含节点集 v ∈ V v\in\mathcal{V} vV和边集 ( u , v ) ∈ E , u , v ∈ V (u, v)\in \mathcal{E}, u, v\in \mathcal{V} (u,v)E,u,vV

对于边的表示,可以用邻接矩阵表示 A ∈ R ∣ V ∣ × ∣ V ∣ A\in R^{\mathcal{|V|\times|V|}} ARV×V,如果包含 ( u , v ) ∈ E (u,v)\in \mathcal{E} (u,v)E,则 A [ u , v ] = 1 A[u, v]=1 A[u,v]=1。由此可得无向图的邻接矩阵为对称矩阵,而有向图则不一定。同时,如果我们给边带上权重,则 A [ u , v ] = r ∈ R A[u,v]=r\in R A[u,v]=rR

1.1.1多关系图

简单来说就是我们可以规定有多种边,这时,边表示为 ( u , τ , v ) ∈ E \mathcal{(u,\tau,v)\in E} (u,τ,v)E,其中 τ \tau τ为我们规定的边的类型。这时对于每一个类型,我们都可以构建一个邻接矩阵 A τ A_\tau Aτ。把所有邻接矩阵合并为一个邻接矩阵向量,可以表示为 A ∈ R ∣ V ∣ × ∣ R ∣ × ∣ V ∣ \mathcal{A}\in \bold{R}^{\mathcal{|V|\times|R|\times|V|}} ARV×R×V,其中 R \mathcal{R} R为类型的集合。

下面介绍两类多关系图
异质图在这一类图中,节点也被分类,于是点集可以划分为完全不相交的集合的并集。 V = V 1 ∪ V 2 ∪ . . . ∪ V k , V i ∩ V j = ∅ , ∀ i ≠ j \mathcal{V=V_1\cup V_2 \cup ... \cup V_k, V_i\cap V_j=\empty, \forall i\neq j} V=V1V2...Vk,ViVj=,i=j
图中的边通常根据节点的类型满足某些限制,如只连接同一类点之类的。

多路图我们假设一个图分为k层,节点在每一层都有相同的,这时我们认为每一层表达某个特殊的种类,于是我们可以有层内的边,也可以有层间的边。

1.1.2特征信息

为表达节点级别的信息,我们可以用这样 X ∈ R ∣ V ∣ × m \mathcal{X\in R^{|V|\times m}} XRV×m

1.2机器学习在图中的应用

1.2.1 节点分类

任务描述为,根据一幅图,给每个节点一个标签 y u y_u yu,其中训练数据是我们会给定训练集中点的标签 V t r a i n ⊂ V \mathcal{V_{train}\subset V} VtrainV,这训练集可能是整个图中的一个小的子集,也有可能是大部分节点(让我们泛化不连接的节点)。

这任务不能简单理解为监督学习,最重要的不同是,图中的每个节点并非独立同分布的。对于传统的监督学习,我们通常要求采样的每个数据点都是独立的,否则我们需要对数据点之间的联系进行建模。同时我们也会要求这些采样的数据点是同分布的,否则我们无法保证模型的泛化性。而节点分类问题并不满足该假设,因为我们是在对互相联系的点进行建模。

例如,我们可以考虑节点间的同质性(如相邻的节点很有可能是一类的)、节点局部的结构等价性等。

1.2.2 关系预测

也成为连接预测、关系图补全等。

任务描述为对于一个图,我们给定一部分边集,作为训练集 V t r a i n \mathcal{V_{train}} Vtrain,我们的目的是补全这个图的边。该任务的复杂度高度依赖于我们所验证的图的数据类型。

这一问题实际上模糊了监督学习和非监督学习,因为他需要从已有的知识中获得增益。

1.2.3 聚类和组织检测

如果说前两个任务更像监督学习,该任务则是无监督学习。

1.2.4 图分类、回归、聚类

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/685233.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阅读笔记12:(全文翻译)Oocyte quality and aging

Oocyte quality and aging 作者:Ali Reza Eftekhari Moghadam, Mahin Taheri Moghadam, Masoud Hemadi, and Ghasem Saki 发表期刊:JBRA Assist Reprod. 发表时间:April 15, 2021 摘要 众所周知,由于卵子的质量和数量随年龄相关的变化,女性的生育能力在生命的第四个十年期…

电脑重装系统之Windows 10 企业版 LTSC 2021

简介 Windows 10 22H2对于我来说太不简洁,最受不了的一点是微软强行硬塞给我一些并没有什么luan用的应用和功能,比如:天气,Onedrive......以及臃肿的ui设计。而且强行进行自动更新,我是真的受不了这个,看着…

leetcode:343.整数拆分

解题思路: 拆分的越多越好(暂且认为),尽可能拆成m个近似相等的数,会使得乘积最大 dp含义:将i进行拆分得到最大的积为dp[i] 递推公式:j x dp[i-j](固定j,只通过凑dp[i-j]进而实现所…

optee UTA加载

流程 动态TA按照存储位置的不同分为REE filesystem TA:存放在REE侧文件系统里的TA; Early TA:被嵌入到optee os里的在supplicant启动之前就可用了。 这里我们讲的是常规的存放在REE侧文件系统里的TA。 通过GP标准调用的与TA通信的命令(opens…

【AIGC】Stable Diffusion的ControlNet参数入门

Stable Diffusion 中的 ControlNet 是一种用于控制图像生成过程的技术,它可以指导模型生成特定风格、内容或属性的图像。下面是关于 ControlNet 的界面参数的详细解释: 低显存模式 是一种在深度学习任务中用于处理显存受限设备的技术。在这种模式下&am…

Vue的一些基础设置

1.浏览器控制台显示Vue 设置找到扩展,搜索Vue 下载这个 然后 点击扩展按钮 点击详细信息 选择这个,然后重启一下就好了 ——————————————————————————————————————————— 2.优化工程结构 src的components里要…

MySQL数据库基础第四篇(多表查询与事务)

文章目录 一、多表关系二、多表查询三、内连接查询四、外连接查询五、自连接查询六、联合查询 union, union all七、子查询1.标量子查询2.列子查询3.行子查询4.表子查询 八、事务八、事务的四大特性九、并发事务问题十、事务隔离级级别 在这篇文章中,我们将深入探讨…

数据结构之队的实现

𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”。…

C++面经

学习视频参考 1 面向对象的三大特征 1.1 封装 1.1.1 目的 隐藏实现细节,实现模块化。 1.1.2 特性 访问权限: public:可以给所有对象访问。protected:仅对子类开放。private:仅对自己开放,可以通过友元…

用HTML5 Canvas创造视觉盛宴——动态彩色线条效果

目录 一、程序代码 二、代码原理 三、运行效果 一、程序代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!-- 声明文档类型为XHTML 1.0 Transitional -…

Python四级考试笔记

Python四级考试笔记【源源老师】 四级标准 一、 理解函数及过程、函数的参数、函数的返回值、变量作用域等概念。 二、 能够创建简单的自定义函数。 三、 理解算法以及算法性能、效率的概念&#xff0c;初步认识算法优化 效率的方法。 四、 理解基本算法中递归的概念。 五、 掌…

C语言---自幂数(“水仙花数”)

1.打印0~100000的自幂数 #include<stdio.h> #include<math.h> int main() {int i 0; for (i 0; i<100000; i){int n 0;int temp i;//判断位数while (temp){n;temp temp / 10;}//每个数字求和temp i;int sum 0;while (temp){sum sum pow(temp % 10, n)…

[office] 如何固定excel单元格的方法 #笔记#微信#微信

如何固定excel单元格的方法 在Excel中录入好数据以后就需要进行统计数据&#xff0c;在有些单元格中的数据不能够改变位置&#xff0c;因此我们需要对特定的单元格进行锁定固定。下面是由小编分享的如何固定excel单元格的方法&#xff0c;供大家阅读、学习。 如何固定excel单元…

掘根宝典之C++多重继承,二义性,虚基类

多重继承派生类 除去一个类从一个基类派生&#xff0c;C还支持一个派生类同时继承多个基类 MI&#xff1a;有多个直接基类的类 1.多重继承派生类的定义 如果已经定义了多个基类&#xff0c;那么定义多重继承的派生类的形式为&#xff1a; class 派生类名:访问标号1 基类名…

【开源】SpringBoot框架开发独居老人物资配送系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询社区4.2 新增物资4.3 查询物资4.4 查询物资配送4.5 新增物资配送 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的独居老人物资配送系统&#xff0c;包含了社区档案、…

win7自带截图工具保存失效解决办法

今日发现一台远航技术的win7中自带的截图工具使用时正常&#xff0c;保存图片时没有弹出保存位置的对话窗口&#xff0c;无法正常保存图片。解决方案如下&#xff1a; 1、进入注册表编辑器。开始-搜索程序和文件-输入 regedit 按下回车键&#xff0c;打开注册表&#xff1b; 2、…

多模态基础---BERT

1. BERT简介 BERT用于将一个输入的句子转换为word_embedding&#xff0c;本质上是多个Transformer的Encoder堆叠在一起。 其中单个Transformer Encoder结构如下&#xff1a; BERT-Base采用了12个Transformer Encoder。 BERT-large采用了24个Transformer Encoder。 2. BERT的…

360小工具

有时候不希望打开360安全卫士&#xff0c;但又需要使用它的小工具 小工具目录统一基于360安装目录&#xff0c;一般情况在&#xff1a;C:\Program Files (x86)\360\360Safe 备份还原小工具 C:\Program Files (x86)\360\360Safe\Utils\winrebackup\360WinREBackup64.exe 360LS…

静态时序分析:SDC约束命令set_clock_transition详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析&#xff1a;SDC约束命令create_clock详解一文的最后&#xff0c;我们谈到了针对理想(ideal)时钟&#xff0c;可以使用set_clock_transition命令直…

MQTT的应用场景和发展方向

随着物联网&#xff08;IoT&#xff09;技术的发展&#xff0c;MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;作为一种轻量级的通信协议&#xff0c;正在被广泛应用于各种物联网场景中。本文将介绍MQTT的应用场景以及未来的发展方向。 一、MQTT的应用场景…