设计中,之所以会去考察信号过孔的残桩效应(Via Stub),是因为它的存在导致了不需要的频率谐振,当这些谐振出现在所关注的信号通道的插入损耗中时,就会引发较为严重的信号完整性(SI)问题。
那么Via Stub到底是如何引发SI问题的呢?可以借助下图对这个问题进行解释:
左侧图,显示一个有两部分组成的通孔,直通部分(Thru)用于器件引脚和PCB走线的互连,分支部分(Stub)则处于开路状态;
中间图,假设一个正弦波从顶部的引脚注入,并沿着直通部分传播,直到到达Thru和Stub的交汇处,此时,信号产生“分流”,一部分沿着PCB走线继续传播,另一部分沿着Stub到达通孔底部,并发生反射,当反射信号到达交汇处时,又再次“分流”,一部分沿着PCB走线继续传播,另一部分返回注入端。
此时,如果f是正弦波的工作频率,并且通过Stub的时间延时TD=1/4工作波长时,当它到达底部反射回交汇处,延时将会是2*TD,恰好是信号工作周期的一半,此时,如右侧图所示,对于正弦波而言,相位差正好是180度,那么,大部分原始注入信号将极有可能被反射信号抵消。
如果将1/4工作波长所处频点定义为共振频点f0,则谐振将会发生在f0及其每一个奇次谐波,此时,如果知道Stub的长度和有效介电常数Dkeff,f0可由下式预测:
其中c是光速(~11.8in/ns),Stub_length单位为inch,f0是1/4波谐振频率(GHz)。
值得注意的是,Dkeff有别于制造商数据表中的Dk,它通常更高,从而降低了谐振频率,主要由两个因素产生了这种差异,一个是过孔焊盘和反焊盘的尺寸带来的过量电容,另一个是因为层压板材的各向异性(the anisotropic nature of the laminate material),即当介电常数的平行 (x-y) 和垂直 (z) 测量值不同时,材料是各向异性的,而制造商数据表中仅列出了垂直测量值。
为简化设计步骤,实际当然不会去认真考虑各向的参数,通常取一个近似比例关系:
除此之外,还需要认识到信号传输的有效带宽,仅仅满足工作基频带宽是不够的,至少应当考虑到5倍基频谐波的带宽,换句话说,设计时需要给f0足够的裕量。
举例来说,如图所示,左侧展示的是测得的Via Stub为270mils时,10GB/s的NRZ码的SDD21和眼图;右侧展示的是测得的Via Stub为65mils时,10GB/s的NRZ码的SDD21和眼图,可以观察到,对于长距离过孔残桩,眼睛是完全闭合的,由本文的第一个公式可知,Stub长度越长,其谐振频点越低,并且,SDD21在4GHz附近出现了剧烈的谐振,可计算出此时的Dkeff=7.46,而4GHz又非常接近于10GB/sNRZ码的奈奎斯特频点(5GHz),对设计进行调整,当Stub变短为65mils时,对应的f0≈16.62GHz,已经远离奈奎斯特频点,但是考虑到10GB/s数据信号需要高达25GHz的带宽,才能将信号上升时间保持在奈奎斯特频率周期的7%,因此,设计时,还需要继续减小Stub长度以尽量提高f0所产生的频点。
综上所述,经验法则和相关公式是进行快速评估的好方法,它们可以帮助设计者在开始设计之前就了解到会发生什么,但是,精确控制设计裕量的唯一方法还是使用三维电磁场求解器对通孔进行建模,因为,还需要在裕量紧张的情况下模拟整个信道的串扰。
参考文献:
Via Stubs – Are They all Bad? Bert Simonovich