题目
按字典 w o r d L i s t wordList wordList 完成从单词 b e g i n W o r d beginWord beginWord 到单词 e n d W o r d endWord endWord 转化,一个表示此过程的 转换序列 是形式上像 b e g i n W o r d − > s 1 − > s 2 − > . . . − > s k beginWord -> s1 -> s2 -> ... -> sk beginWord−>s1−>s2−>...−>sk 这样的单词序列,并满足:
- 每对相邻的单词之间仅有单个字母不同。
- 转换过程中的每个单词 s i ( 1 < = i < = k ) si(1 <= i <= k) si(1<=i<=k)必须是字典 w o r d L i s t wordList wordList 中的单词。注意, b e g i n W o r d beginWord beginWord 不必是字典 w o r d L i s t wordList wordList 中的单词。
- s k = = e n d W o r d sk == endWord sk==endWord
- 给你两个单词 b e g i n W o r d beginWord beginWord 和 e n d W o r d endWord endWord ,以及一个字典 w o r d L i s t wordList wordList 。请你找出并返回所有从 b e g i n W o r d beginWord beginWord 到 e n d W o r d endWord endWord 的 最短转换序列 ,如果不存在这样的转换序列,返回一个空列表。每个序列都应该以单词列表 [ b e g i n W o r d , s 1 , s 2 , . . . , s k ] [beginWord, s1, s2, ..., sk] [beginWord,s1,s2,...,sk] 的形式返回。
示例:
- 输入: b e g i n W o r d = " h i t " , e n d W o r d = " c o g " , w o r d L i s t = [ " h o t " , " d o t " , " d o g " , " l o t " , " l o g " , " c o g " ] beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"] beginWord="hit",endWord="cog",wordList=["hot","dot","dog","lot","log","cog"]
- 输出: [ [ " h i t " , " h o t " , " d o t " , " d o g " , " c o g " ] , [ " h i t " , " h o t " , " l o t " , " l o g " , " c o g " ] ] [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]] [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
- 解释:存在 2 2 2 种最短的转换序列:
" h i t " − > " h o t " − > " d o t " − > " d o g " − > " c o g " "hit" -> "hot" -> "dot" -> "dog" -> "cog" "hit"−>"hot"−>"dot"−>"dog"−>"cog"
" h i t " − > " h o t " − > " l o t " − > " l o g " − > " c o g " "hit" -> "hot" -> "lot" -> "log" -> "cog" "hit"−>"hot"−>"lot"−>"log"−>"cog"
方法
- 广度优先
- 我们可以把每个单词都抽象为一个点,如果两个单词可以只改变一个字母进行转换,那么说明他们之间有一条双向边。因此我们只需要把满足转换条件的点相连,就形成了一张图。
- 基于该图,我们以 b e g i n W o r d beginWord beginWord 为图的起点,以 e n d W o r d endWord endWord 为终点进行广度优先搜索,寻找 b e g i n W o r d beginWord beginWord 到 e n d W o r d endWord endWord 的最短路径。
- 建图:依据朴素的思路,我们可以枚举每一对单词的组合,判断它们是否恰好相差一个字符,以判断这两个单词对应的节点是否能够相连。但是这样效率太低,我们可以优化建图。
- 具体地,我们可以创建虚拟节点。例如对于单词 hit,我们创建三个虚拟节点 *it、h*t、hi*,并让 hit 向这三个虚拟节点分别连一条边即可。如果一个单词能够转化为 hit,那么该单词必然会连接到这三个虚拟节点之一。对于每一个单词,我们枚举它连接到的虚拟节点,把该单词对应的 id 与这些虚拟节点对应的 id 相连即可。
- 最后我们将起点加入队列开始广度优先搜索,当搜索到终点时,我们就找到了最短路径的长度。注意因为添加了虚拟节点,所以我们得到的距离为实际最短路径长度的两倍。同时我们并未计算起点对答案的贡献,所以我们应当返回距离的一半再加一的结果。
- 因为要返回转换序列,所以每次搜索时要将 每个单词是从哪些单词扩展而来 记录下来(代码中的 f r o m from from),最后回溯得到最短路径
代码
class Solution {
public:int id = 0;vector<vector<int>> graph;map<string, int> maps;map<int, string> maps1;bool add_node(string& word){if(maps.find(word) == maps.end()){maps[word] = id;maps1[id] = word;id++;graph.emplace_back();return true;}elsereturn false;}void add_edge(string& word){if(add_node(word)){int id2 = maps[word];for(int i = 0; i < word.size(); i++){string temp = word;temp[i] = '*';add_node(temp);int id1 = maps[temp];graph[id1].push_back(id2);graph[id2].push_back(id1);}}}void backtrack(vector<vector<string>> &res, const string &Node, unordered_map<string, set<string>> &from,vector<string> &path) {if (from[Node].empty()) {res.push_back({path.rbegin(), path.rend()});return;}for (const string &Parent: from[Node]) {if(Parent.find('*') == string::npos)path.push_back(Parent);backtrack(res, Parent, from, path);if(Parent.find('*') == string::npos)path.pop_back();}}// int ladderLength(string beginWord, string endWord, vector<string>& wordList) {vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {vector<vector<string>> res;for(int i = 0; i < wordList.size(); i++){add_edge(wordList[i]);}add_edge(beginWord);if(maps.find(endWord) == maps.end())return res;queue<int> que;que.push(maps[beginWord]);vector<int> dis(id, INT_MAX);dis[maps[beginWord]] = 0;unordered_map<string, set<string>> from = {{beginWord, {}}};bool found = false;while(!que.empty()){int id_temp = que.front();que.pop();if(id_temp == maps[endWord]){// return dis[id_temp]/2+1;found = true;break;}for(int i = 0; i < graph[id_temp].size(); i++){// 不懂就手写一遍广度优先的流程if(dis[graph[id_temp][i]] == INT_MAX){from[maps1[graph[id_temp][i]]].insert(maps1[id_temp]);que.push(graph[id_temp][i]);dis[graph[id_temp][i]] = dis[id_temp] + 1;}else if(dis[id_temp]+1 == dis[graph[id_temp][i]]){from[maps1[graph[id_temp][i]]].insert(maps1[id_temp]);}}}if (found) {vector<string> Path = {endWord};backtrack(res, endWord, from, Path);}return res;}
};