【AIGC】Stable Diffusion的模型微调

在这里插入图片描述

为什么要做模型微调

模型微调可以在现有模型的基础上,让AI懂得如何更精确生成/生成特定的风格、概念、角色、姿势、对象。Stable Diffusion 模型的微调方法通常依赖于您要微调的具体任务和数据。

下面是一个通用的微调过程的概述

准备数据集:准备用于微调的数据集。这包括输入图像和相应的标签(如果适用)。确保数据集与您的微调任务相匹配,并且具有足够的样本量和多样性。

选择模型:选择要微调的 Stable Diffusion 模型。根据您的任务需求,选择合适的预训练模型。您可以根据任务的复杂性和数据集的大小选择不同的模型规模。

冻结部分层(可选):根据您的需求,决定是否冻结预训练模型的一部分层。通常,您可以选择冻结模型的前几层,以保留模型在基本特征上学到的知识,而只微调顶层来适应新任务。

定义微调策略:定义微调的训练策略,包括学习率、优化器、损失函数等。您可以选择使用预训练模型的默认参数,或根据任务的要求进行调整。

微调模型:使用准备好的数据集和定义的微调策略,对模型进行微调。通过多次迭代训练模型,并根据验证集的性能进行调整。

评估模型:在微调完成后,使用测试集对模型进行评估,并评估其在新任务上的性能。

调整和优化:根据评估结果对微调过程进行调整和优化,包括调整模型架构、超参数等。

在 Stable Diffusion 模型微调方面,主要有四种方法:Dreambooth、LoRA(Low-Rank Adaptation of Large Language Models)、Textual Inversion和Hypernetworks。它们之间的区别如下:

Textual Inversion( Embedding):这种方法实际上并没有修改原始的 Diffusion 模型,而是通过深度学习找到了与你想要的图像特征一致的角色形象特征参数。它的本质是在微调时训练一个小模型,该模型可以根据文本描述生成对应的图像。然而,它并不能教会 Diffusion 模型渲染其没有见过的图像内容。

Dreambooth:Dreambooth 是将输入的图像训练到 Stable Diffusion 模型中,微调整个神经网络的所有层权重。它的本质是先复制了源模型,然后在其基础上进行微调,形成一个新模型。这种方法需要大量的显存来训练,并且训练速度较慢。

LoRA:LoRA 也使用少量图片进行微调,但它是训练单独的特定网络层的权重,并将新的网络层插入到原始模型中。LoRA 生成的模型较小,训练速度较快,但它的效果会依赖于基础模型。

Hypernetworks:Hypernetworks 与 LoRA 类似,但它是一个单独的神经网络模型,用于输出可以插入到原始 Diffusion 模型中的中间层。通过训练,我们可以得到一个新的神经网络模型,该模型能够向原始 Diffusion 模型中插入合适的中间层及对应的参数,从而使输出图像与输入指令之间产生关联关系。

总的来说,LoRA 是目前主流的训练方法,因为它的训练时间和实用性较高。但根据任务的具体需求,选择合适的微调方法非常重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/684212.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

平时积累的FPGA知识点(6)

平时在FPGA群聊等积累的FPGA知识点,第六期: 1 万兆网接口,发三十万包,会出现掉几包的情况,为什么? 原因:没做时钟约束,万兆网接口的实现,本质上都是高速serdes&#xf…

MinGW下载安装教程 傻瓜式操作【超详细】

一、下载 下载地址:MinGW - Minimalist GNU for Windows - Browse Files at SourceForge.net 点击“Download Latest Version”即可 注意:小伙伴儿们也可以私信我要安装包。 二、安装 下载完成后,会得到一个名为 mingw-get-setup.exe 的安…

机器学习网格搜索超参数优化实战(随机森林) ##4

文章目录 基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索 基于Kaggle电信用户流失案例数据(可在官网进行下载) 导入库 # 基础数据科学运…

系统架构27 - 软件架构设计(6)

基于架构的软件开发方法 基于架构的软件开发方法(ABSD)概述概念与术语开发模型体系结构需求体系结构设计体系结构文档化体系结构复审体系结构实现体系结构的演化 基于架构的软件开发方法(ABSD) 基于体系结构的软件设计 (Architec…

【JavaEE】_文件与IO

目录 1.文件概述 1.1 文件的概念 1.2 文件的存储 1.3 文件的分类 1.4 目录结构 1.5 文件操作 1.5.1 文件系统操作 1.5.2 文件内容操作 2. Java文件系统操作 2.1 File类所处的包 2.2 构造方法 2.3 方法 2.3.1 与文件路径、文件名有关的方法 2.3.2 文件是否存在与普…

openGauss学习笔记-221 openGauss性能调优-确定性能调优范围-分析作业是否被阻塞

文章目录 openGauss学习笔记-221 openGauss性能调优-确定性能调优范围-分析作业是否被阻塞221.1 操作步骤 openGauss学习笔记-221 openGauss性能调优-确定性能调优范围-分析作业是否被阻塞 数据库系统运行时,在某些业务场景下查询语句会被阻塞,导致语句…

【MySQL】操作库 —— 表的操作 -- 详解

一、增加表 1、创建表 mysql> create database [if not exists] table_name ( -> field1 datatype, -> field2 datatype, -> field3 datatype -> ) character set 字符集 collate 校验规则 engine 存储引擎; 注意 :最后一行也可以写成&#x…

Vue源码系列讲解——模板编译篇【二】(整体运行流程)

目录 1. 整体流程 2. 回到源码 3. 总结 1. 整体流程 上篇文章中我们说了&#xff0c;在模板解析阶段主要做的工作是把用户在<template></template>标签内写的模板使用正则等方式解析成抽象语法树&#xff08;AST&#xff09;。而这一阶段在源码中对应解析器&…

c语言操作符(上)

目录 ​编辑 原码、反码、补码 1、正数 2、负数 3、二进制计算1-1 移位操作符 1、<<左移操作符 2、>>右移操作符 位操作符&、|、^、~ 1、&按位与 2、|按位或 3、^按位异或 特点 4、~按位取反 原码、反码、补码 1、正数 原码 反码 补码相同…

STM32 HAL库 STM32CubeMX -- IWDG(独立看门狗)

STM32 HAL库 STM32CubeMX -- IWDG 一、IWDG简介二、独立看门狗的工作原理三、驱动函数初始化函数HAL IWDG Init()初始化函数HAL IWDG Init()其他宏函数 四、超时时间计算第一种办法第二种办法&#xff08;推荐&#xff09; 一、IWDG简介 看门狗(Watchdog)就是MCU上的一种特殊的…

【AIGC】Stable Diffusion的模型入门

下载好相关模型文件后&#xff0c;直接放入Stable Diffusion相关目录即可使用&#xff0c;Stable Diffusion 模型就是我们日常所说的大模型&#xff0c;下载后放入**\webui\models\Stable-diffusion**目录&#xff0c;界面上就会展示相应的模型选项&#xff0c;如下图所示。作者…

计算机网络——多媒体网络

前些天发现了一个巨牛的人工智能学习网站 通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff0c; 跳转到网站 小程一言 我的计算机网络专栏&#xff0c;是自己在计算机网络学习过程中的学习笔记与心得&#xff0c;在参考相关教材&#xff0c;网络搜素…

保育员考试怎么搜题找答案?9个不限次的公众号和软件分享啦! #经验分享#学习方法

学会运用各类学习辅助工具和资料&#xff0c;是大学生培养自主学习能力和信息获取能力的重要途径之一。 1.粉鹿搜题 这是一个公众号 使用方法也很简单&#xff0c;将题目发送至公众号后台&#xff0c;即可得到题目答案~ 下方附上一些测试的试题及答案 1、下列哪项是聚合式联…

DS Wannabe之5-AM Project: DS 30day int prep day18

Q1. What is Levenshtein Algorithm? Levenshtein算法&#xff0c;也称为编辑距离算法&#xff0c;是一种量化两个字符串之间差异的方法。它通过计算将一个字符串转换成另一个字符串所需的最少单字符编辑操作次数来实现。这些编辑操作包括插入、删除和替换字符。Levenshtein距…

掌握Go并发:Go语言并发编程深度解析

&#x1f3f7;️个人主页&#xff1a;鼠鼠我捏&#xff0c;要死了捏的主页 &#x1f3f7;️系列专栏&#xff1a;Golang全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&…

第三讲 数据存储

面向磁盘的架构 DBMS 假定数据库的主要存储位置位于非易失性磁盘【non-volatile disk】上。 DBMS 的组件管理非易失性【non-volatile】和易失性【volatile】存储之间的数据移动。 为了理解来回移动数据的影响&#xff0c;我们首先要先理解存储层次结构是什么样的。 存储层次【…

文生图提示词:气候特征

天气和气候 --气候特征 Climate Features 气候特征的基本词汇&#xff0c;涵盖了温度和湿度的变化&#xff0c;以及它们在不同气候类型中的体现。 Hot 炎热 Cold 寒冷 Warm 温暖 Cool 凉爽 Humid 湿润 Dry 干燥 Mild 温和 Chilly 冷飕飕 Freezing 冰冻 Sweltering 酷热 Frosty …

RK3568平台开发系列讲解(实验篇)杂项设备驱动实验

🚀返回专栏总目录 文章目录 一、什么是杂项设备驱动二、杂项设备的注册和卸载三、杂项设备驱动实验代码沉淀、分享、成长,让自己和他人都能有所收获!😄 一、什么是杂项设备驱动 在 Linux 中,把无法归类的五花八门的设备定义成杂项设备。相较于字符设备,杂项设备有以下两…

企业数字化转型战略规划与实践:迈向未来的关键之举

在信息技术的不断革新和全球数字化浪潮的推动下&#xff0c;企业数字化转型已经成为当今商业世界中不可或缺的一项战略规划。随着技术的进步&#xff0c;企业必须积极应对数字化转型的挑战&#xff0c;并将其作为发展的关键驱动力。本文将探讨企业数字化转型的重要性&#xff0…

幻兽帕鲁联机服务器搭建新手小白教程

这里分为两种搭建方式&#xff0c;都是采用的一键搭建的傻瓜式教程&#xff0c;1分钟就可以搞定。 一、通过阿里云一键部署幻兽帕鲁服务器 以下教程基于阿里云服务器来搭建幻兽帕鲁游戏服务器&#xff0c;通过一键部署的方式&#xff0c;最快1分钟即可完成部署。 阿里云一键…