ubuntu22.04@laptop OpenCV Get Started: 010_blob_detection

ubuntu22.04@laptop OpenCV Get Started: 010_blob_detection

  • 1. 源由
  • 2. blob应用Demo
    • 2.1 C++应用Demo
    • 2.2 Python应用Demo
  • 3. 重点分析
    • 3.1 Threshold
    • 3.2 Area
    • 3.3 Circularity
    • 3.4 Convexity
    • 3.5 Inertia Ratio
  • 4. 总结
  • 5. 参考资料
  • 6. 补充

1. 源由

Blob是图像中的一组连接像素,它们共享一些共同特性(例如灰度值)。

在下图中,暗连接区域是斑点,斑点检测旨在识别和标记这些区域。

在这里插入图片描述

OpenCV提供了一种基于不同特征检测和过滤斑点的简单方法。

2. blob应用Demo

010_blob_detection是OpenCV通过设置blob参数过滤图像的示例程序。

2.1 C++应用Demo

C++应用Demo工程结构:

010_blob_detection/CPP$ tree . -L 1
.
├── blob.cpp
├── blob.jpg
└── CMakeLists.txt0 directories, 3 files

确认OpenCV安装路径:

$ find /home/daniel/ -name "OpenCVConfig.cmake"
/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/
/home/daniel/OpenCV/opencv/build/OpenCVConfig.cmake
/home/daniel/OpenCV/opencv/build/unix-install/OpenCVConfig.cmake$ export OpenCV_DIR=/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/

C++应用Demo工程编译执行:

$ mkdir build
$ cd build
$ cmake ..
$ cmake --build . --config Release
$ cd ..
$ ./build/blob

2.2 Python应用Demo

Python应用Demo工程结构:

010_blob_detection/Python$ tree . -L 1
.
├── blob.jpg
└── blob.py0 directories, 2 files

Python应用Demo工程执行:

$ workoncv-4.9.0
$ python blob.py

3. 重点分析

下面是通过params过滤以后,显示blob的代码:

C++:

	// Storage for blobsvector<KeyPoint> keypoints;#if CV_MAJOR_VERSION < 3   // If you are using OpenCV 2// Set up detector with paramsSimpleBlobDetector detector(params);// Detect blobsdetector.detect( im, keypoints);
#else // Set up detector with paramsPtr<SimpleBlobDetector> detector = SimpleBlobDetector::create(params);   // Detect blobsdetector->detect( im, keypoints);
#endif // Draw detected blobs as red circles.// DrawMatchesFlags::DRAW_RICH_KEYPOINTS flag ensures// the size of the circle corresponds to the size of blobMat im_with_keypoints;drawKeypoints( im, keypoints, im_with_keypoints, Scalar(0,0,255), DrawMatchesFlags::DRAW_RICH_KEYPOINTS );// Show blobsimshow("keypoints", im_with_keypoints );

Python:

# Create a detector with the parameters
ver = (cv2.__version__).split('.')
if int(ver[0]) < 3 :detector = cv2.SimpleBlobDetector(params)
else : detector = cv2.SimpleBlobDetector_create(params)# Detect blobs.
keypoints = detector.detect(im)# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
# the size of the circle corresponds to the size of blobim_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# Show blobs
cv2.imshow("Keypoints", im_with_keypoints)

3.1 Threshold

采样值阈值过滤,在[minThreshold, maxThreshold]之间采用thresholdStep步进方式过滤。

C++:

// Change thresholds
params.minThreshold = 10;
params.maxThreshold = 200;

Python:

# Change thresholds
params.minThreshold = 10
params.maxThreshold = 200

3.2 Area

面积过滤,小于当前面积时,被过滤掉。

C++:

// Filter by Area.
params.filterByArea = true;
params.minArea = 1500;

Python:

# Filter by Area.
params.filterByArea = True
params.minArea = 1500

3.3 Circularity

圆形度过滤,低于阈值被过滤掉(越接近圆的时候,为1)。

在这里插入图片描述

C++:

// Filter by Circularity
params.filterByCircularity = true;
params.minCircularity = 0.1;

Python:

# Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.1

3.4 Convexity

blob面积和凸包的面积之比(不凹陷的图形该值为1),因此,凸包越厉害越接近0。

C++:

// Filter by Convexity
params.filterByConvexity = true;
params.minConvexity = 0.87;

Python:

# Filter by Convexity
params.filterByConvexity = True
params.minConvexity = 0.87

3.5 Inertia Ratio

惯性率,通常圆(1),椭圆(0, 1),过滤惯性率小于该值的物体。

C++:

// Filter by Inertia
params.filterByInertia = true;
params.minInertiaRatio = 0.01;

Python:

# Filter by Inertia
params.filterByInertia = True
params.minInertiaRatio = 0.01

4. 总结

本文通过对图像进行SimpleBlobDetector操作,从而对blob物体进行过滤,主要目的是理解该对象(SimpleBlobDetector)参数的含义。

  • detect(images,keypoints))
  • images Image set.
  • keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .

5. 参考资料

【1】ubuntu22.04@laptop OpenCV Get Started
【2】ubuntu22.04@laptop OpenCV安装
【3】ubuntu22.04@laptop OpenCV定制化安装

6. 补充

学习是一种过程,对于前面章节学习讨论过的,就不在文中重复了。

有兴趣了解更多的朋友,请从《ubuntu22.04@laptop OpenCV Get Started》开始,一个章节一个章节的了解,循序渐进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683920.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java中的String类的常用方法(对于字符串的常用操作)

目录 一、获取指定索引的字符 二、 获取指定字符或者字符串的索引位置 三、判断字符串是否以指定内容开头或结尾 四、替换指定的字符或者是字符串 五、获取字符串的子串 六、将字符串转换为字符数组 七、比较字符串的内容是否相等 八、连接字符串 九、比较两个字符串的大…

ESP32学习(3)——连接WIFI

1.简介 Wi-Fi是基于IEEE 802.11标准的无线网络技术 让联网设备以无线电波的形式&#xff0c;加入采用TCP/IP通信协议的网络. Wi-Fi设备有两种模式&#xff1a; 1.Access Point(AP) 模式&#xff0c;此为无线接入点&#xff0c;家里的光猫就是结合WiFi和internet路由功能的AP。…

【Java程序员面试专栏 分布式中间件】Redis 核心面试指引

关于Redis部分的核心知识进行一网打尽,包括Redis的基本概念,基本架构,工作流程,存储机制等,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 基础概念 明确redis的特性、应用场景和数据结构 什么是Redis,Redis有哪些应用场景 Redi…

【十九】【C++】 priority_queue简单使用和仿函数

priority_queue文档介绍翻译 优先队列是一种容器适配器&#xff0c;专门设计成其中的第一个元素始终是根据某种严格的弱排序准则最大的元素。 这种上下文类似于堆&#xff0c;其中元素可以在任何时刻插入&#xff0c;而只能检索最大堆元素&#xff08;在优先队列中顶部的元素&a…

Stable Diffusion系列(五):原理剖析——从文字到图片的神奇魔法(扩散篇)

文章目录 DDPM论文整体原理前向扩散过程反向扩散过程模型训练过程模型生成过程概率分布视角参数模型设置论文结果分析 要想完成SD中从文字到图片的操作&#xff0c;必须要做到两步&#xff0c;第一步是理解文字输入包含的语义&#xff0c;第二步是利用语义引导图片的生成。下面…

Uipath 实现Excel 文件合并

场景描述 某文件夹下有多个相同结构(标题列相同)的Excel 文件&#xff0c;需实现汇总到一个Excel文件。 常见场景有销售明细汇总&#xff0c;订单汇总等。 解决方案 对于非IT 人员则可使用Uipath 新式Excel活动&#xff0c;通过拖拉实现。也可以通过内存表或使用VB脚本&…

寒假学习记录17:包管理器(包管理工具)

概念 包&#xff08;package&#xff09; 包含元数据的库&#xff0c;这些元数据包括&#xff1a;名称&#xff0c;描述&#xff0c;git主页&#xff0c;许可证协议&#xff0c;作者&#xff0c;依赖..... 库&#xff08;library&#xff0c;简称lib&#xff09; 以一个或多个模…

【教3妹学编程-算法题】子集中元素的最大数量

2哥 : 3妹&#xff0c;今年过年收到压岁钱了没呢。 3妹&#xff1a;切&#xff0c;我都多大了啊&#xff0c;肯定没收了啊 2哥 : 俺也一样&#xff0c;不仅没收到&#xff0c;小侄子小外甥都得给&#xff0c;还倒贴好几千 3妹&#xff1a;哈哈哈哈&#xff0c;2叔叔&#xff0c…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Navigation组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Navigation组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Navigation组件 鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#…

Python中多种生成随机密码超实用实例

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站零基础入门的AI学习网站~。 前言 密码是信息安全的基石&#xff0c;它用于保护我们的账户、数据和隐私。为了确保密码足够强大&#xff0c;…

clang前端

Clang可以处理C、C和Objective-C源代码 Clang简介 Clang可能指三种不同的实体&#xff1a; 前端&#xff08;在Clang库中实现&#xff09;编译驱动程序&#xff08;在clang命令和Clang驱动程序库中实现&#xff09;实际的编译器&#xff08;在clang-ccl命令中实现&#xff0…

kafka如何保证消息不丢?

概述 我们知道Kafka架构如下&#xff0c;主要由 Producer、Broker、Consumer 三部分组成。一条消息从生产到消费完成这个过程&#xff0c;可以划分三个阶段&#xff0c;生产阶段、存储阶段、消费阶段。 产阶段: 在这个阶段&#xff0c;从消息在 Producer 创建出来&#xff0c;…

c++阶梯之类与对象(下)

前文&#xff1a; c阶梯之类与对象&#xff08;上&#xff09;-CSDN博客 c阶梯之类与对象&#xff08;中&#xff09;-CSDN博客 c阶梯之类与对象&#xff08;中&#xff09;&#xff1c; 续集 &#xff1e;-CSDN博客 1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时&a…

【机器学习笔记】3 逻辑回归

分类问题 分类问题监督学习最主要的类型&#xff0c;主要特征是标签离散&#xff0c;逻辑回归是解决分类问题的常见算法&#xff0c;输入变量可以是离散的也可以是连续的 二分类 先从用蓝色圆形数据定义为类型1&#xff0c;其余数据为类型2&#xff1b;只需要分类1次&#x…

Java并发基础:SynchronousQueue全面解析!

内容概要 SynchronousQueue的优点在于其直接性和高效性&#xff0c;它实现了线程间的即时数据交换&#xff0c;无需中间缓存&#xff0c;确保了数据传输的实时性和准确性&#xff0c;同时&#xff0c;其灵活的阻塞机制使得线程同步变得简单而直观&#xff0c;适用于需要精确协…

相机图像质量研究(13)常见问题总结:光学结构对成像的影响--鬼影

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

TiDB 在医疗保障信息平台的应用实践

文章介绍了 TiDB 在医疗保障信息平台中的应用。东软医保云应用管理平台通过与 TiDB 联合&#xff0c;成功满足了医疗保障业务中高并发、实时性和复杂查询的要求。在某地市医疗保障信息平台的实践中&#xff0c;TiDB 分布式数据库有效实现了在线交易和实时分析服务&#xff0c;日…

C语言学习day14:数组定义和使用

定义变量&#xff1a; 数据类型 变量 值 数组定义&#xff1a; 数据类型 数组名[元素个数]{值1,值2,值3} 代码&#xff1a; int main() {//定义变量//数据类型 变量 值//数组定义//数据类型 数组名[元素个数]{值1,值2,值3}//数组下标 数组名[小标]//数组下标是…

.NET Core WebAPI中封装Swagger配置

一、创建相关文件 创建一个Utility/SwaggerExt文件夹&#xff0c;添加一个类 二、在Program中找到Swagger相关配置信息 三、添加方法&#xff0c;在Program中调用 在SwaggerExt类中添加方法&#xff0c;将相关配置添写入 /// <summary> /// swagger配置 /// </sum…

初识Qt | 从安装到编写Hello World程序

文章目录 1.前端开发简单分类2.Qt的简单介绍3.Qt的安装和环境配置4.创建简单的Qt项目 1.前端开发简单分类 前端开发&#xff0c;这里是一个广义的概念&#xff0c;不单指网页开发&#xff0c;它的常见分类 网页开发&#xff1a;前端开发的主要领域&#xff0c;使用HTML、CSS …