能够做一镜到底的网站/怎么简单制作一个网页

能够做一镜到底的网站,怎么简单制作一个网页,公司网站站群是什么,驴妈妈网站建设一、explain查询计划概述 explain将Hive SQL 语句的实现步骤、依赖关系进行解析,帮助用户理解一条HQL 语句在底层是如何实现数据的查询及处理,通过分析执行计划来达到Hive 调优,数据倾斜排查等目的。 https://cwiki.apache.org/confluence/d…

一、explain查询计划概述

       explain将Hive SQL 语句的实现步骤、依赖关系进行解析,帮助用户理解一条HQL 语句在底层是如何实现数据的查询及处理,通过分析执行计划来达到Hive 调优,数据倾斜排查等目的。

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Explainicon-default.png?t=N7T8https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Explain

     explain查询计划有三部分:

  • 抽象语法树(AST):Hive使用Antlr解析生成器,可以自动地将HQL生成为抽象语法树
  • stage dependencies:各个stage之间的依赖性
  • stage plan:各个stage的执行计划(物理执行计划)

二、explain实战

     explain执行计划一般分为【仅有Map阶段类型】、【Map+Reduce类型】

2.1 案例一:Map+Reduce类型

数据准备

create table follow
(user_id int,follower_id int
)row format delimited
fields terminated by '\t';insert overwrite table follow
values (1,2),(1,4),(1,5);create table music_likes
(user_id int,music_id int
)row format delimited
fields terminated by '\t';insert overwrite table music_likes 
values (1,20),(1,30),(1,40),(2,10),(2,20),(2,30),(4,10),(4,20),(4,30),(4,60);

执行计划分析

执行如下sql语句:

explain formatted
selectcount(t0.user_id) as cnt, sum(t1.music_id)  as sum_f
from follow t0left join music_likes t1on t0.user_id = t1.user_id
where t0.follower_id > 2
group by t0.follower_id
having cnt > 2
order by sum_f
limit 1;

生成物理执行计划:

STAGE DEPENDENCIES: --//作业依赖关系Stage-2 is a root stageStage-1 depends on stages: Stage-2Stage-0 depends on stages: Stage-1STAGE PLANS: --//作业详细信息Stage: Stage-2  --//Stage-2 详细任务Spark --//表示当前引擎使用的是 SparkDagName: atguigu_20240212112407_cb09efe6-ac6e-4a57-a3a8-1b83b2fbf3a7:24Vertices:Map 4  Map Operator Tree:  --//Stage-2 的Map阶段操作信息TableScan   --// 扫描表t1alias: t1Statistics: Num rows: 10 Data size: 40 Basic stats: COMPLETE Column stats: NONE  --// 对当前阶段的统计信息,如当前处理的行和数据量(都是预估值)Spark HashTable Sink Operatorkeys:0 user_id (type: int)1 user_id (type: int)Execution mode: vectorizedLocal Work:Map Reduce Local WorkStage: Stage-1SparkEdges:
"        Reducer 2 <- Map 1 (GROUP, 2)"
"        Reducer 3 <- Reducer 2 (SORT, 1)"DagName: atguigu_20240212112407_cb09efe6-ac6e-4a57-a3a8-1b83b2fbf3a7:23Vertices:Map 1 Map Operator Tree: --//Stage-1的map阶段TableScanalias: t0Statistics: Num rows: 3 Data size: 9 Basic stats: COMPLETE Column stats: NONEFilter Operator --// 谓词下推(where条件)表示在Tablescan的结果集上进行过滤predicate: (follower_id > 2) (type: boolean) --// 过滤条件Statistics: Num rows: 1 Data size: 3 Basic stats: COMPLETE Column stats: NONEMap Join Operator  --//hive默认开启Map Join(set hive.map.aggr=true)condition map:Left Outer Join 0 to 1keys:0 user_id (type: int)1 user_id (type: int)
"                      outputColumnNames: _col0, _col1, _col6"input vertices:1 Map 4Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONEGroup By Operator --//这里是因为默认设置了hive.map.aggr=true,会在mapper先做一次预聚合,减少reduce需要处理的数据; 
"                        aggregations: count(_col0), sum(_col6)" --//分组聚合使用的算法keys: _col1 (type: int) --//分组的列mode: hash --// 这里的mode模式是:hash,即对key值进行hash分区,数据分发到对应的task中;
"                        outputColumnNames: _col0, _col1, _col2" --//输出的列名Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONEReduce Output Operator --// 将key,value从map端输出到reduce端(key还是有序的)key expressions: _col0 (type: int)sort order: +   // 输出到reduce端的同时,对key值(_col)正序排序;+表示正序,-表示逆序Map-reduce partition columns: _col0 (type: int) --//分区字段Statistics: Num rows: 11 Data size: 44 Basic stats: COMPLETE Column stats: NONE
"                          value expressions: _col1 (type: bigint), _col2 (type: bigint)"  -- //从map端输出的valueExecution mode: vectorizedLocal Work:Map Reduce Local WorkReducer 2 Execution mode: vectorizedReduce Operator Tree:Group By Operator --// reduce端的归并聚合
"                aggregations: count(VALUE._col0), sum(VALUE._col1)" --// 聚合函数的值keys: KEY._col0 (type: int)mode: mergepartial --// 此时group by的模式为mergepartial 
"                outputColumnNames: _col0, _col1, _col2"Statistics: Num rows: 5 Data size: 20 Basic stats: COMPLETE Column stats: NONESelect Operator --// 选择列,为下步的Filter Operator准备好数据
"                  expressions: _col1 (type: bigint), _col2 (type: bigint)"
"                  outputColumnNames: _col1, _col2"Statistics: Num rows: 5 Data size: 20 Basic stats: COMPLETE Column stats: NONEFilter Operator --//过滤predicate: (_col1 > 2L) (type: boolean)Statistics: Num rows: 1 Data size: 4 Basic stats: COMPLETE Column stats: NONESelect Operator --// 选择列,为下步的Reduce Output Operator准备好数据
"                      expressions: _col1 (type: bigint), _col2 (type: bigint)"
"                      outputColumnNames: _col0, _col1"Statistics: Num rows: 1 Data size: 4 Basic stats: COMPLETE Column stats: NONEReduce Output Operatorkey expressions: _col1 (type: bigint)sort order: +Statistics: Num rows: 1 Data size: 4 Basic stats: COMPLETE Column stats: NONETopN Hash Memory Usage: 0.1value expressions: _col0 (type: bigint)Reducer 3 Execution mode: vectorizedReduce Operator Tree:Select Operator
"                expressions: VALUE._col0 (type: bigint), KEY.reducesinkkey0 (type: bigint)"
"                outputColumnNames: _col0, _col1"Statistics: Num rows: 1 Data size: 4 Basic stats: COMPLETE Column stats: NONELimitNumber of rows: 1Statistics: Num rows: 1 Data size: 4 Basic stats: COMPLETE Column stats: NONEFile Output Operator  --// 输出到文件compressed: falseStatistics: Num rows: 1 Data size: 4 Basic stats: COMPLETE Column stats: NONEtable:input format: org.apache.hadoop.mapred.SequenceFileInputFormat --//输入文件类型output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat --//输出文件类型serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe --//序列化、反序列化方式Stage: Stage-0Fetch Operator --// 客户端获取数据操作limit: 1    --// limit 操作Processor Tree:ListSink

 采用可视化工具得到stage依赖图及各个stage的执行计划。stage图如下:

 工具:dist

链接:https://pan.baidu.com/s/1EruBmJPovA3A2cHRiFvQ9Q 
提取码:3kt7

使用方式:126-Hive-调优-执行计划-可视化工具_哔哩哔哩_bilibili

执行计划的理解:

  • 根据层级,从最外层开始,包含两大部分:

stage  dependencies: 各个stage之间的依赖性

stage plan: 各个stage的执行计划(物理执行计划)

  • stage plan中的有一个Map Reduce,一个MR的执行计划分为两部分:

Map Operator Tree : map端的执行计划树
Reduce Operator Tree : Reduce 端的执行计划树

  • 这两个执行计划树包含这条sql语句的算子operator:

(1)map端的首要操作是加载表,即TableScan表扫描操作,常见的属性有:

  • alisa: 表名称
  • statistics: 表统计信息,包含表中数据条数,数据大小等

(2)Select Operator:选取操作,常见的属性:

  • expressions:字段名称及字段类型
  • outputColumnNames:输出的列名称
  • Statistics:表统计信息,包含表中数据条数,数据大小等

(3)Group By Operator:分组聚合操作,常见的属性:

  • aggregations:显示聚合函数信息
  • mode:聚合模式,包括 hash;mergepartial等
  • keys:分组的字段,如果sql逻辑中没有分组,则没有此字段
  • outputColumnNames:聚合之后输出的列名
  • Statistics:表统计信息,包含分组聚合之后的数据条数,数据大小等

(4)Reduce Output Operator:输出到reduce操作,常见属性:

  • sort order :如果值是空,代表不排序;值为“+”,代表正序排序;值为“-”,代表倒序排序;值为“+-”,代表有两列参与排序,第一列是正序,第二列是倒序

(5)Filter Operator:过滤操作,常见的属性:

  • predicate: 过滤条件,如sql语句中的where id>=10,则此处显示(id >= 10)

(6)Map Join Operator:join操作,常见的属性:

  • condition map: join方式,例如有:Inner Join 、 Left Outer Join
  • keys:join的条件字段

(7)File Output Operator:文件输出操作,常见的属性:

  • compressed:是否压缩
  • table:表的信息,包含输入输出的文件格式化方式,序列化方式等

(8)Fetch Operator:客户端获取数据的操作,常见的属性:

  • limit:值为-1表示不限制条数,其他值为限制的条数

接下来拆解explain执行计划

(1)先看第一部分,代表stage之间的依赖关系

得出stage-2是根,stage-1依赖于stage-2,stage-0依赖于stage-1

(2)stage-2 阶段: 该阶段主要是对t1表进行扫描

(3)stage-1 阶段

Map阶段 1:

Map阶段:首先扫描t0表,其次谓词下推会执行where里面的过滤操作,然后执行mapjoin操作(),由于hive默认是开启预聚合操作的,所以会先在map端进行group by 分组预聚合(局部聚合),与此同时也会自动按照group by的key值进行升序排序

Reduce 2 阶段:

Reduce 2 阶段:该阶段group by分组聚合为merge操作,将分组有序的数据进行归并操作。group by 后的select操作主要是为下一步的having操作准备数据having操作会在select的结果集上做进一步的过滤。hive sql 中的select执行顺序不是固定的,但是每一次的selet操作是为下一步准备有效数据

Reduce 3 阶段:该阶段select最终结果

(4)stage-0 阶段

      该阶段主要是执行limit操作。

小结

    通过上述的explain执行计划的拆解,得出hivesql的底层执行顺序大致如下:

from->
where(谓词下推)->
join->
on->
select(select中的字段与group by只要不一致就会有)->
group by->
select(为having准备数据,因而having中可以使用select别名)->
having->
select(过滤后的结果集)->
distinct->
order by ->
select->
limit

  hive sql 中的select执行顺序不是固定的,但是每一次的selet操作是为下一步准备有效数据

2.2 案例二:Map+Reduce类型(窗口函数)

数据准备

create database exec5;
create table if not exists table1
(id     int comment '用户id',`date` string comment '用户登录时间'
);
insert overwrite table table1
values (1, '2019-01-01 19:28:00'),(1, '2019-01-02 19:53:00'),(1, '2019-01-03 22:00:00'),(1, '2019-01-05 20:55:00'),(1, '2019-01-06 21:58:00'),(2, '2019-02-01 19:25:00'),(2, '2019-02-02 21:00:00'),(2, '2019-02-04 22:05:00'),(2, '2019-02-05 20:59:00'),(2, '2019-02-06 19:05:00'),(3, '2019-03-04 21:05:00'),(3, '2019-03-05 19:10:00'),(3, '2019-03-06 19:55:00'),(3, '2019-03-07 21:05:00');

执行计划分析

执行如下sql语句:

--查询连续登陆3天及以上的用户(字节面试题)
explain formatted
selectid
from (selectid,dt,date_sub(dt, row_number() over (partition by id order by dt)) dsfrom ( --用户在同一天可能登录多次,需要去重selectid,--to_date():日期函数-- date_format(`date`,'yyyy-MM-dd')date_format(`date`, 'yyyy-MM-dd') as dtfrom table1group by id, date_format(`date`, 'yyyy-MM-dd')) tmp1) tmp2
group by id, ds
having count(1) >=3;

生成物理执行计划:

STAGE DEPENDENCIES: --//作业依赖关系Stage-1 is a root stageStage-0 depends on stages: Stage-1STAGE PLANS:Stage: Stage-1  --// Stage-1详细任务Spark  --//表示当前引擎使用的是 SparkEdges:
"        Reducer 2 <- Map 1 (GROUP PARTITION-LEVEL SORT, 2)"
"        Reducer 3 <- Reducer 2 (GROUP, 2)"DagName: atguigu_20240212153029_036d3420-d92e-436f-b78d-25a7b67525d3:44Vertices:Map 1 Map Operator Tree:  --//  Stage-1阶段的map执行树TableScan --// 扫描table1表alias: table1Statistics: Num rows: 14 Data size: 294 Basic stats: COMPLETE Column stats: NONESelect Operator --// 选择列,为下一步 Group By Operator准备好数据
"                    expressions: id (type: int), date_format(date, 'yyyy-MM-dd') (type: string)"
"                    outputColumnNames: _col0, _col1" --// 输出的列名Statistics: Num rows: 14 Data size: 294 Basic stats: COMPLETE Column stats: NONEGroup By Operator --// mapper端的group by,即先在 mapper端进行预聚合
"                      keys: _col0 (type: int), _col1 (type: string)"mode: hash --// 对key值(_col0及_col1 )进行hash分区,数据分发到对应的task
"                      outputColumnNames: _col0, _col1" --// 输出的列名Statistics: Num rows: 14 Data size: 294 Basic stats: COMPLETE Column stats: NONEReduce Output Operator --//从map端输出到reduce端
"                        key expressions: _col0 (type: int), _col1 (type: string)" --//从map端输出的key值sort order: ++  --//将key及value值从map端输出到reduce端,这里的“++”代表对两个key值( _col0, _col1)都进行升序排序Map-reduce partition columns: _col0 (type: int) --//分区字段Statistics: Num rows: 14 Data size: 294 Basic stats: COMPLETE Column stats: NONEExecution mode: vectorizedReducer 2 Reduce Operator Tree: --//reduce端的执行树Group By Operator   --// reduce端的group by,即归并聚合
"                keys: KEY._col0 (type: int), KEY._col1 (type: string)"mode: mergepartial 
"                outputColumnNames: _col0, _col1"Statistics: Num rows: 7 Data size: 147 Basic stats: COMPLETE Column stats: NONEPTF Operator  --//reduce端的窗口函数分析操作Function definitions:Input definitioninput alias: ptf_0
"                        output shape: _col0: int, _col1: string"type: WINDOWINGWindowing table definitioninput alias: ptf_1name: windowingtablefunctionorder by: _col1 ASC NULLS FIRST --//窗口函数排序列partition by: _col0  --// 窗口函数分区列raw input shape:window functions:window function definitionalias: row_number_window_0name: row_number --//窗口函数的方法window function: GenericUDAFRowNumberEvaluatorwindow frame: ROWS PRECEDING(MAX)~FOLLOWING(MAX) --//当前窗口函数上下边界isPivotResult: trueStatistics: Num rows: 7 Data size: 147 Basic stats: COMPLETE Column stats: NONESelect Operator  --//选择列,为下一步Group By Operator准备好数据
"                    expressions: _col0 (type: int), date_sub(_col1, row_number_window_0) (type: date)" --//select选择两个列,_col0, date_sub(_col1,row_number over()) 
"                    outputColumnNames: _col0, _col1"Statistics: Num rows: 7 Data size: 147 Basic stats: COMPLETE Column stats: NONEGroup By Operator --// group by 预聚合aggregations: count() --// 聚合函数 count()值
"                      keys: _col0 (type: int), _col1 (type: date)"mode: hash
"                      outputColumnNames: _col0, _col1, _col2"Statistics: Num rows: 7 Data size: 147 Basic stats: COMPLETE Column stats: NONEReduce Output Operator --// 输出到下一个reducer
"                        key expressions: _col0 (type: int), _col1 (type: date)"sort order: ++ --// 输出到下一个reducer前,同时对两个key进行排序
"                        Map-reduce partition columns: _col0 (type: int), _col1 (type: date)"Statistics: Num rows: 7 Data size: 147 Basic stats: COMPLETE Column stats: NONEvalue expressions: _col2 (type: bigint)Reducer 3 Execution mode: vectorizedReduce Operator Tree:Group By Operator  --// group by 归并聚合aggregations: count(VALUE._col0)
"                keys: KEY._col0 (type: int), KEY._col1 (type: date)"mode: mergepartial
"                outputColumnNames: _col0, _col1, _col2"Statistics: Num rows: 3 Data size: 63 Basic stats: COMPLETE Column stats: NONESelect Operator  --//选择列,为下一步Filter Operator 准备好数据
"                  expressions: _col0 (type: int), _col2 (type: bigint)"
"                  outputColumnNames: _col0, _col2"Statistics: Num rows: 3 Data size: 63 Basic stats: COMPLETE Column stats: NONEFilter Operator  --//过滤条件predicate: (_col2 >= 3L) (type: boolean)Statistics: Num rows: 1 Data size: 21 Basic stats: COMPLETE Column stats: NONESelect Operator  --//选择列,为下一步File Output Operator 准备好数据expressions: _col0 (type: int)outputColumnNames: _col0Statistics: Num rows: 1 Data size: 21 Basic stats: COMPLETE Column stats: NONEFile Output Operator  --//对上面的结果集进行文件输出compressed: false --//不压缩Statistics: Num rows: 1 Data size: 21 Basic stats: COMPLETE Column stats: NONEtable:input format: org.apache.hadoop.mapred.SequenceFileInputFormat --//输入文件类型output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat --//输出文件类型serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe --//序列化、反序列化方式Stage: Stage-0Fetch Operator  --//客户端获取数据的操作limit: -1  --//limit 值为-1:表示不限制条数Processor Tree:ListSink

 采用可视化工具得到stage依赖图及各个stage的执行计划。stage图如下: 

接下来拆解explain执行计划

(1)先看第一部分,代表stage之间的依赖关系

  Stage-1 is a root stageStage-0 depends on stages: Stage-1

得出stage-1是根,stage-0依赖于stage-1

(2)stage-1 阶段

Map阶段 1:

Map阶段:首先扫描table1表,其次select选择器会对下一步的group by 预选数据,为group by operator算子准备数据。然后在map端进行group by 分组预聚合(局部聚合),key及value值从mapper端输出到reducer端前,会自动按照的key值进行升序排序

Reduce 2 阶段:

Reduce 2 阶段:该阶段group by分组聚合为merge操作,将分组有序的数据进行归并操作。其次进行开窗操作

date_sub(dt, row_number() over (partition by id order by dt)) ds

开窗后的select选择器,逻辑如下:

selectid,dt,date_sub(dt, row_number() over (partition by id order by dt)) ds

select选择列,主要是为下一步的 group by id, ds 分组操作准备好数据集;

Reduce 3 阶段:

(3)stage-0 阶段

      该阶段是客户端获取数据操作

小结

    上述案例主要介绍了带有窗口函数的explain执行计划分析

2.3 案例三:Map+Reduce类型(窗口函数)

数据准备

CREATE TABLE t_order (oid int ,uid int ,otime string,oamount int)
ROW format delimited FIELDS TERMINATED BY ",";
load data local inpath "/opt/module/hive_data/t_order.txt" into table t_order;
select * from t_order;

执行计划分析

执行如下sql语句:

explain formatted 
with tmp as (selectoid,uid,otime,oamount,date_format(otime, 'yyyy-MM') as dtfrom t_order
)
selectuid,--每个用户一月份的订单数sum(if(dt = '2018-01', 1, 0)) as    m1_count,--每个用户二月份的订单数sum(if(dt = '2018-02', 1, 0)) as    m2_count,-- 开窗函数row_number() over (partition by uid order by  sum(if(dt = '2018-01', 1, 0)))rk
from tmp
group by uidhaving m1_count >0 and m2_count=0;

生成物理执行计划:

STAGE DEPENDENCIES:--//作业依赖关系Stage-1 is a root stageStage-0 depends on stages: Stage-1STAGE PLANS: --//作业详细信息Stage: Stage-1  --//Stage-1 详细任务Spark  --//表示当前引擎使用的是 SparkEdges:
"        Reducer 2 <- Map 1 (GROUP, 2)"
"        Reducer 3 <- Reducer 2 (PARTITION-LEVEL SORT, 2)"DagName: atguigu_20240212174520_011afb56-73f8-49c1-9150-8399e66507c5:50Vertices:Map 1 Map Operator Tree: --//Stage-1 的Map阶段操作信息TableScan  --// 扫描表t_orderalias: t_orderStatistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONESelect Operator  --// 选择列,为下一步 Group By Operator准备好数据
"                    expressions: uid (type: int), date_format(otime, 'yyyy-MM') (type: string)" --//选择的两个列 uid, date_format(otime, 'yyyy-MM')
"                    outputColumnNames: _col1, _col4"  --// 输出的列名,_col1代表uid,_col4代表 date_format(otime, 'yyyy-MM')Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEGroup By Operator ---// mapper端的group by,即先在 mapper端进行预聚合
"                      aggregations: sum(if((_col4 = '2018-01'), 1, 0)), sum(if((_col4 = '2018-02'), 1, 0))"  --//聚合函数算法keys: _col1 (type: int)mode: hash --// 对key值(_col1,即uid )进行hash分区,数据分发到对应的task
"                      outputColumnNames: _col0, _col1, _col2" --//输出的列(uid,m1_count,m2_count)Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEReduce Output Operator --//从mapper端输出到reducer端key expressions: _col0 (type: int)sort order: + --//将key,value从mapper端输出到reducer端前,自动对key值(_col0)升序排序Map-reduce partition columns: _col0 (type: int)Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONE
"                        value expressions: _col1 (type: bigint), _col2 (type: bigint)" --//输出value值(m1_count,m2_count)Execution mode: vectorizedReducer 2 Execution mode: vectorizedReduce Operator Tree:Group By Operator  --// reduce端的group by,即归并聚合
"                aggregations: sum(VALUE._col0), sum(VALUE._col1)"keys: KEY._col0 (type: int)mode: mergepartial
"                outputColumnNames: _col0, _col1, _col2"Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEFilter Operator --//having 过滤操作predicate: ((_col1 > 0L) and (_col2 = 0L)) (type: boolean) --//过滤条件Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEReduce Output Operator
"                    key expressions: _col0 (type: int), _col1 (type: bigint)"sort order: ++Map-reduce partition columns: _col0 (type: int)Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEReducer 3 Execution mode: vectorizedReduce Operator Tree:Select Operator --// 选择列,为下步的PTF Operator开窗分析操作准备好数据
"                expressions: KEY.reducesinkkey0 (type: int), KEY.reducesinkkey1 (type: bigint), 0L (type: bigint)" --// 选择的列为_col0, _col1, _col2,即:uid,m1_count,m2_count
"                outputColumnNames: _col0, _col1, _col2" //-- 选择的列:uid,m1_count,m2_countStatistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEPTF Operator --//reduce端的窗口函数分析操作Function definitions:Input definitioninput alias: ptf_0
"                        output shape: _col0: int, _col1: bigint, _col2: bigint"type: WINDOWINGWindowing table definitioninput alias: ptf_1name: windowingtablefunctionorder by: _col1 ASC NULLS FIRST -//窗口函数排序列partition by: _col0  --// 窗口函数分区列raw input shape:window functions:window function definitionalias: row_number_window_0name: row_number  --//窗口函数的方法window function: GenericUDAFRowNumberEvaluatorwindow frame: ROWS PRECEDING(MAX)~FOLLOWING(MAX) --//当前窗口函数上下边界isPivotResult: trueStatistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONESelect Operator --//选择列,为下一步File Output Operator准备好数据
"                    expressions: _col0 (type: int), _col1 (type: bigint), _col2 (type: bigint), row_number_window_0 (type: int)"  --// 选择的列为_col0, _col1,_col2, _col3,即:uid,m1_count,m2_count,rk
"                    outputColumnNames: _col0, _col1, _col2, _col3"Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEFile Output Operator  --//对上面的结果集进行文件输出compressed: false --//不压缩Statistics: Num rows: 1 Data size: 4460 Basic stats: COMPLETE Column stats: NONEtable:input format: org.apache.hadoop.mapred.SequenceFileInputFormatoutput format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormatserde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDeStage: Stage-0Fetch Operator  --//客户端获取数据的操作limit: -1  --//limit 值为-1:表示返回结果不限制条数Processor Tree: ListSink

 采用可视化工具得到stage依赖图及各个stage的执行计划。stage图如下: 

接下来拆解explain执行计划

(1)先看第一部分,代表stage之间的依赖关系

得出stage-1是根,stage-0依赖于stage-1

(2)stage-1 阶段

Map阶段 1:

Map阶段:首先扫描 t_order表,其次select选择器会对下一步的group by 预选数据,为group by operator算子准备数据。然后在map端进行group by 分组预聚合(局部聚合),key及value值从mapper端输出到reducer端前,会自动按照的key值进行升序排序

Reduce 2 阶段:

Reduce 2 阶段:该阶段group by分组聚合为merge操作,将分组有序的数据进行归并操作。然后对分组结果进行过滤having ....,逻辑如下:

selectuid,sum(if(dt = '2018-01', 1, 0)) as m1_count,sum(if(dt = '2018-02', 1, 0)) as m2_count
from tmp
group by uid
having m1_count >0 and m2_count=0;

Reduce 3 阶段:

Reduce 3 阶段:可以得到窗口函数的执行是在group by,having之后进行,是与select同级别的。如果SQL中既使用了group by又使用了partition by,那么此时partition by的分组是基于group by分组之后的结果集进行的再次分组,即窗口函数分析的数据范围也是基于group by后的数据。

(3)stage-0 阶段

      该阶段是客户端获取数据操作

小结

     上述案例通过对explain执行计划分析,重点验证了窗口函数与group by 之间的区别与联系,也验证了窗口函数执行顺序。

窗口函数的执行顺序: 窗口函数是作用于select后的结果集。select 的结果集作为窗口函数的输入,但是位于 distcint 之前。窗口函数的执行结果只是在原有的列中单独添加一列,形成新的列,它不会对已有的行或列做修改。简化版的执行顺序如下图:

     Hive窗口函数详细介绍见文章:

Hive窗口函数详解-CSDN博客文章浏览阅读560次,点赞9次,收藏12次。Hive窗口函数详解https://blog.csdn.net/SHWAITME/article/details/136095532?spm=1001.2014.3001.5501参考文章:

https://www.cnblogs.com/nangk/p/17649685.html

Hive Group By的实现原理_hive group by 多个字段-CSDN博客

你真的了解HiveSql吗?真实的HiveSql执行顺序是长这样的_hive 含有tablesample的sql执行顺序-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/680227.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java安全 URLDNS链分析

Java安全 URLDNS链分析 什么是URLDNS链URLDNS链分析调用链路HashMap类分析URL类分析 exp编写思路整理初步expexp改进最终exp 什么是URLDNS链 URLDNS链是Java安全中比较简单的一条利用链&#xff0c;无需使用任何第三方库&#xff0c;全依靠Java内置的一些类实现&#xff0c;但…

网络专栏目录

大家好我是苏麟 , 这是网络专栏目录 . 图解网络 资料来源 : 小林coding 小林官方网站 : 小林coding (xiaolincoding.com) 图解网络目录 基础篇 基础篇 TCP/IP网络模型有几层? : TCP/IP网络模型 键入网址到页面显示,期间发生了什么? : 键入网址到页面显示,期间发生了什么 现阶…

C++:面向对象——类的构造

1.1学会面向对象的编程思想 面向对象的英文缩写是OO&#xff0c;它是一种设计思想。 面向对象有3大特点&#xff1a;封装、继承和多态。 1.封装 封装有两个作用&#xff0c;一个是将不同的小对象封装成一个大对象&#xff1b;另外一个是把一部分内部属性和功能对外界屏蔽。…

数据结构哈希表

这里个大家用数组来模拟哈希表 法一&#xff1a;拉链法 法二&#xff1a;开放寻址法 /** Project: 11_哈希表* File Created:Sunday, January 17th 2021, 2:11:23 pm* Author: Bug-Free* Problem:AcWing 840. 模拟散列表 拉链法*/ #include <cstring> #include <iostr…

Gazebo无法显示模型 [Err] [InsertModelWidget.cc:403] Missing model.config for model

跟着教程一步步运行demo project时遇到了一个问题&#xff1a; 运行launch文件后&#xff0c;gazebo中世界文件加载了&#xff0c;但是机器人模型没有加载出来&#xff0c;之前没有遇到过这种情况。 后面发现&#xff0c;运行launch命令时&#xff0c;一直处在某个conda环境下&…

牛客——递归实现指数型枚举(枚举,dfs)

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 从 1∼n1\sim n1∼n这 n (n≤16)(n \leq 16)(n≤16) 个整数中随机选取任意多个&#xff0c;输出所有可能的选择方案。 输入描述: 一个整数n。 输出描述: 每行一种方案。同一行内…

Vue学习笔记(三)常用指令、生命周期

Vue学习笔记&#xff08;三&#xff09;常用指令 vue指令&#xff1a;html标签上带有 v- 前缀的特殊属性&#xff0c;不同的指令具有不同的含义&#xff0c;可以实现不同的功能。 常用指令&#xff1a; 指令作用v-for列表渲染&#xff0c;遍历容器的元素或者对象的属性v-bind…

docker安装、运行

1、安装 之前有docker的话&#xff0c;需要先卸载旧版本&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 安装之前需要安装yum工具&#xff1a; sud…

SHA-512在Go中的实战应用: 性能优化和安全最佳实践

SHA-512在Go中的实战应用: 性能优化和安全最佳实践 简介深入理解SHA-512算法SHA-512的工作原理安全性分析SHA-512与SHA-256的比较结论 实际案例分析数据完整性验证用户密码存储数字签名总结 性能优化技巧1. 利用并发处理2. 避免不必要的内存分配3. 适当的数据块大小总结 与其他…

python 笔记:shapely(形状篇)

主要是点&#xff08;point&#xff09;、线&#xff08;linestring&#xff09;、面&#xff08;surface&#xff09; 1 基本方法和属性 object.area 返回对象的面积&#xff08;浮点数&#xff09; object.bounds 返回一个&#xff08;minx, miny, maxx, maxy&#xff09;元…

《乱弹篇(十三)明朝事儿》

2024年农历除夕夜&#xff0c;因追剧收看电视连续剧《后宫》而放弃了收看一年一度的《春晚》&#xff0c;至到春节&#xff08;农历正月初一&#xff09;晚才看完了《后宫》。 社交网站“必应”图片《后宫》 电视连续剧《后宫》&#xff0c; 讲的是明朝英宗末年的历史故事&…

python -m SimpleHTTPServer mac报错

错误内容&#xff1a; Traceback (most recent call last):File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/runpy.py", line 174, in _run_module_as_main"__main__", fname, loader, pkg_name)File "/System/Libra…

【数据回顾】20240205千股跌停的信息面回顾

一、回顾过去 这是发生在2024年2月5日的事件&#xff0c;一千多只股票跌停&#xff0c;当时传闻的利空消息主要是&#xff1a; 1. 基金公司把基金持仓的股票转融通给别人做空&#xff0c;收融券利息&#xff0c;然后这利息还不算基金收益。 2. 上海机场发布&#xff0c;机场往来…

【更新】企业数字化转型-年度报告175个词频、文本统计

数据说明&#xff1a; 这份数据含数字化转型175个词频、各维度水平&#xff0c;保留2000-2021年数据。参考吴非、赵宸宇两位老师做法&#xff0c;根据上市公司年报文本&#xff0c;整理数字化转型175个词频数据&#xff0c;希望对大家有所帮助。 参考管理世界中吴非&#xff…

【达芬奇调色教程】

文章目录 第一章&#xff1a; 达芬奇软件基本了解1. 项目管理2. 新建项目3. 项目设置面板4. 偏好设置5. 界面布局 第一章&#xff1a; 达芬奇软件基本了解 1. 项目管理 前面的滑块可以控制缩略图的大小 2. 新建项目 项目管理器在操作本项目的时候&#xff0c;可以查看其他项目…

React18原理: 渲染与更新时的重点关注事项

概述 react 在渲染过程中要做很多事情&#xff0c;所以不可能直接通过初始元素直接渲染还需要一个东西&#xff0c;就是虚拟节点&#xff0c;暂不涉及React Fiber的概念&#xff0c;将vDom树和Fiber 树统称为虚拟节点有了初始元素后&#xff0c;React 就会根据初始元素和其他可…

WSL外部SSH连接有效方法

前言 wsl作为windows下使用linux平台有效的手段之一&#xff0c;本文可以让win作为工作站&#xff0c;外部系统用来连接win下的wsl系统。 自动启动服务脚本 https://zhuanlan.zhihu.com/p/47733615 开机自启端口转发 wslname "Ubuntu-20.04" 要转发端口的Linux…

图(高阶数据结构)

目录 一、图的基本概念 二、图的存储结构 2.1 邻接矩阵 2.2 邻接表 三、图的遍历 3.1 广度优先遍历 3.2 深度优先遍历 四、最小生成树 4.1 Kruskal算法 4.2 Prim算法 五、最短路径 5.1 单源最短路径-Dijkstra算法 5.2 单源最短路径-Bellman-Ford算法 5.3 多源最…

MySQL简单配置GTID

前期规划 IP地址 角色 系统版本 内核 软件包名称 192.168.2.3 Mysql主服务器 CentOS Stream 9 5.14.0- 381.el9.x86_64 mysql-8.2.0-linux-glibc2.17-x86_64.tar.xz 192.168.2.4 Mysql从服务器 CentOS Stream 9 5.14.0- 381.el9.x86_64 mysql-8.2.0-linux-glibc…

Day 43 | 动态规划 1049. 最后一块石头的重量 II 、494. 目标和 、 474.一和零

1049. 最后一块石头的重量 II 题目 文章讲解 视频讲解 思路&#xff1a;dp[j] 表示容量为 j 的背包&#xff0c;最多可以背最大重量为dp[j]。 class Solution {public int lastStoneWeightII(int[] stones) {int sum 0;for (int i 0; i < stones.length; i) {sum stone…