AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作番茄采摘场景下番茄成熟度检测识别计数分析系统

去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基本都是用来收割小麦的,最近几年好像老家也能看到用于收割玉米的机器了不过相对还是比较少的,玉米的收割我们基本上还是人工来收割的,不仅累效率还低遇上对玉米叶片过敏的就更要命了。。。。闲话就扯到这里了。

有时候经常在想我们的农业机械化自动化什么时候能再向前迈进一大步,回顾德国的工业机械,在视频展示的效果中,其实很关键的主要是两部分,一部分是机器视觉定位检测识别,另一部分是机械臂传动轴,两部分相互配合才能完成采摘工作,前文实践如下:

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于DETR(DEtection TRansformer)开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于DETR(DEtection TRansformer)开发构建番茄采摘场景下番茄成熟度检测识别计数分析系统》

本文的主要想法是想要基于YOLOv5全系列的不同参数量级的模型来开发构建用于番茄采摘场景下的番茄作物成熟度检测识别系统,首先看下实例效果:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:- images/train
val:- images/test
test:- images/test# Classes
names:0: unripe1: sem-ripe2: fullyripe

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

从整体实验结果对比来看:n系列的模型效果最差,被其他几款模型拉开了明显的差距,s系列的模型在60个epoch之前同样被拉开了明显的差距,随后达到了与其他几款模型相近的水准,m和l系列的模型性能相近,x系列的模型最优,略高于m和l系列的模型,考虑到计算量的问题,这里我们最终选择使用m系列的模型来作为最终的推理模型。

接下来就以m系列的模型为基准,详细看下结果详情:

【Batch实例】

【数据分布可视化】

【PR曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677830.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[经验] 喉咙沙哑的原因及应对方法是什么 #学习方法#其他#媒体

喉咙沙哑的原因及应对方法是什么 生活中,喉咙不舒服是很常见的情况,尤其是喉咙沙哑,让人感到特别难受,影响睡眠和生活质量。那么喉咙沙哑怎么办呢?接下来我会分享一些简单易行的方法,帮助你缓解这种不适感…

Python 错误及其解决方法

Python 是一种易于学习的编程语言,但初学者在学习和使用 Python 的过程中难免会遇到一些错误。以下是一些常见的 Python 错误及其解决方法: 1. 语法错误(SyntaxError): python # 错误示例 print("Hello, World!…

uniapp 上传多张图片到django后端

uniapp 上传多张图片到django后端 要在UniApp中上传多张图片到Django后端,你可以按照以下步骤进行操作: 在UniApp中,使用uni.chooseImage()方法选择多张图片,并将其保存在一个数组中。例如: uni.chooseImage({count…

Java异常处理 throw和throws

目录 throwthrows实例制造异常 在Java中,throw和throws关键字都与异常处理有关,但它们的使用方式和目的有所不同。 throw throw关键字: * throw用于在代码中显式地抛出一个异常。你可以使用它来触发一个异常,并指定异常的类型。…

python从入门到精通(十六):python爬虫的BeautifulSoup4

python爬虫的BeautifulSoup4 BeautifulSoup4导入模块解析文件创建对象python解析器beautifulsoup对象的种类Tag获取整个标签获取标签里的属性和属性值Navigablestring 获取标签里的内容BeautifulSoup获取整个文档Comment输出的内容不包含注释符号BeautifulSoup文档遍历Beautifu…

C#系列-C#访问hadoop API(9)

在C#中访问Hadoop通常涉及到与Hadoop分布式文件系统(HDFS)进行交互,以及可能执行MapReduce作业或其他Hadoop生态系统组件(如HBase或Hive)。虽然Hadoop原生是用Java编写的,但是可以通过一些库在C#中与Hadoop…

cf921(Div2)C题

寻找一段长为m的序列当中不存在的子序列 Problem - C - Codeforces void solve() {int n, k, m;std::cin >> n >> k >> m;std::string s;std::cin >> s;std::string t;int j 0;bool ok true;//长为nfor (int i 0; i < n; i) {//计数int cnt …

深入探索Redis:如何有效遍历海量数据集

深入探索Redis&#xff1a;如何有效遍历海量数据集 Redis作为一个高性能的键值存储数据库&#xff0c;广泛应用于各种场景&#xff0c;包括缓存、消息队列、排行榜等。随着数据量的增长&#xff0c;如何高效地遍历Redis中的海量数据成为了一个值得探讨的问题。在本篇博客中&am…

【机器学习300问】23、什么是主动学习?

一、带标签的数据很难获得 机器学习中&#xff0c;比如监督学习需要带有标签的训练样本才能得到模型&#xff0c;然而在以下几种场景中去获取带有标签的数据是很难的&#xff1a; 自动驾驶场景&#xff1a;对自动驾驶汽车收集的高清地图数据或实时摄像头数据进行标注&#xff…

机器学习复习(8)——逻辑回归

目录 逻辑函数&#xff08;Logistic Function&#xff09; 逻辑回归模型的假设函数 从逻辑回归模型转换到最大似然函数过程 最大似然函数方法 梯度下降 逻辑函数&#xff08;Logistic Function&#xff09; 首先&#xff0c;逻辑函数&#xff0c;也称为Sigmoid函数&#…

2.9 Binance_interface APP 现货交易-限单价平仓

Binance_interface APP 现货交易-限单价平仓 Github地址PyTed量化交易研究院 量化交易研究群(VX) py_ted目录 Binance_interface APP 现货交易-限单价平仓1. APP 现货交易-限单价平仓函数总览2. 模型实例化3. 同步 非堵塞 固定价格平仓&#xff08;卖出&#xff09;4. 同步 …

Cubase学习:音频转midi

大家好!我是诗书画唱!今天要分享的小技巧就是Cubase中的音频转midi的功能!希望对你有所帮助!以后我会在这个账号分享自己知道的很多小技巧!关注我!不迷路!大家也可以关注我后,在我的空间搜索关键词,找到各种对应的教程进行学习,非常的方便!而且自己的教程会尽可能纠…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Web组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Web组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Web组件 提供具有网页显示能力的Web组件&#xff0c;ohos.web.webview提供web控制能…

开发者福利,微软Xamarin不再收费

Build2016大会已经进行到第二天的主题演讲&#xff0c;微软在大会上宣布Xamarin对全部Visual Studio用户免费开放&#xff0c;而所有Visual Studio版本都会捆绑Xamarin这个跨平台开发工具。Xamarin免费是开发者的福利&#xff0c;因为原本Visual Studio就有免费的“社区版”&am…

爬虫练习——动态网页的爬取(股票和百度翻译)

动态网页也是字面意思&#xff1a;实时更新的那种 还有就是你在股票这个网站上&#xff0c;翻页。他的地址是不变的 是动态的加载&#xff0c;真正我不太清楚&#xff0c;只知道他是不变的。如果用静态网页的方法就不可行了。 静态网页的翻页&#xff0c;是网址是有规律的。 …

【国产MCU】-CH32V307-触摸按键检测(TKEY)

触摸按键检测(TKEY) 文章目录 触摸按键检测(TKEY)1、TKEY介绍2、TKEY使用实例触摸检测控制(TKEY)单元,借助ADC 模块的电压转换功能,通过将电容量转换为电压量进行采样,实现触摸按键检测功能。检测通道复用ADC 的16 个外部通道,通过ADC 模块的单次转换模式实现触摸按键…

人工智能时代的遥感技术

时相遥感影像变化检测是指对同一地理区域、不同时间获取的遥感影像进行自动变化发现、识别与 解释的遥感处理与分析技术。随着卫星遥感技术及人工智能理论方法的快速发展&#xff0c;基于多时相遥感影像数据驱 动和模型驱动的传统变化检测方法正朝着数据一模型一知识联合驱动的…

设计模式第五天|代理模式 7-小明买房子 装饰模式 8-咖啡加糖

目录 【设计模式专题之代理模式】7-小明买房子【设计模式专题装饰模式】8-咖啡加糖 【设计模式专题之代理模式】7-小明买房子 文章链接&#xff1a;卡码网设计模式 题目链接&#xff1a;7-小明买房子 这里注意在HomeAgent类里需要定义对象成员变量HomeBuyer&#xff0c;这里在实…

【MySQL】-12 MySQL索引(上篇MySQL索引类型前置-2-高性能的索引策略)

MySQL索引-高性能的索引策略 3 高性能的索引策略3.1 独立的列3.2 前缀索引和索引选择性3.3 多列索引3.4 选择合适的索引列顺序3.5 聚簇索引(Clustered Indexes)3.5.1 InnoDB和MyISAM的数据布局的比较3.5.2 按primary key的顺序插入行(InnoDB) 3.6 覆盖索引(Covering Indexes)3.…

Linux dump命令教程:如何安全快速备份你的文件系统(附实例详解和注意事项)

Linux dump命令介绍 dump命令在Linux中用于备份文件系统到某个存储设备。它备份的是整个文件系统&#xff0c;而不是单个文件。换句话说&#xff0c;它将所需的文件备份到磁带、磁盘或任何其他存储设备以进行安全存储。dump命令在Linux中只适用于ext2/ext3文件系统&#xff0c…