机器学习复习(8)——逻辑回归

目录

逻辑函数(Logistic Function)

逻辑回归模型的假设函数

从逻辑回归模型转换到最大似然函数过程

最大似然函数方法

梯度下降


逻辑函数(Logistic Function)

首先,逻辑函数,也称为Sigmoid函数,是一个常见的S形函数。其数学表达式为:

g(z)=\frac1{1+e^{-z}}

这个函数的特点是,其输出值总是在0和1之间。这个性质使得Sigmoid函数非常适合用来进行二分类,在机器学习中,它可以将任意实数映射到(0, 1)区间,用来表示某个事件发生的概率。例如,在逻辑回归模型中,我们可以用它来预测一个实例属于某个类别的概率。

def sigmoid(z):return 1 / (1 + np.exp(-z))

可视化:

nums = np.arange(-10, 10, step=1)fig, ax = plt.subplots(figsize=(12,8))
ax.plot(nums, sigmoid(nums), 'r')
plt.show()

逻辑回归模型的假设函数

逻辑回归模型的假设函数将输入特征X和参数θ的线性组合通过逻辑函数转换为一个概率值,其公式为:

h_\theta(x)=\frac1{1+e^{-\theta^TX}}

这里,θ^T X是参数θ和输入特征X的点积,它将多个输入特征线性组合成一个实数值,然后通过逻辑函数映射到(0, 1)区间。这个映射的结果可以被解释为在给定输入特征X的条件下,预测结果为正类的概率。

逻辑回归模型通过优化参数θ来最大化观测数据的似然函数,从而找到最佳的决策边界,以区分不同的类别。在实际应用中,逻辑回归是一个非常强大且广泛使用的分类算法,特别是在二分类问题中。 

从逻辑回归模型转换到最大似然函数过程

逻辑回归模型的假设函数定义为:

h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}}

为了找到最佳的参数θ,我们使用最大似然估计。对于二分类问题,给定的数据集D=\{(x^{(i)},y^{(i)})\}_{i=1}^{m},其中y^{(i)}\in\{0,1\},,我们可以写出似然函数:

L(\theta)=P(y|X;\theta)=\prod_{i=1}^m(h_\theta(x^{(i)}))^{y^{(i)}}(1-h_\theta(x^{(i)}))^{1-y^{(i)}}

这个似然函数表示了,在给定参数θ和输入X的条件下,观察到当前数据集y的概率。最大化这个似然函数等价于最大化观测数据在当前模型参数下出现的概率。

为了便于计算,通常对似然函数取对数,得到对数似然函数:

\log L(\theta)=\sum_{i=1}^m[y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log(1-h_\theta(x^{(i)}))]

 最大化对数似然函数相对简单,因为对数函数是单调的,且对数似然函数是关于θ的凸函数,容易通过梯度下降等优化算法找到全局最优解。

在机器学习中,我们通常通过最小化损失函数(而不是最大化似然函数)来训练模型。因此,我们将最大化对数似然问题转化为最小化损失函数问题。损失函数是对数似然函数的负值,平均化到每个样本上,即:

这就是逻辑回归中使用的损失函数,也称为对数损失或交叉熵损失。通过最小化这个损失函数,我们可以找到最佳的模型参数θ,使模型对训练数据的拟合程度最高,即最可能产生观测数据的参数。 

最大似然函数方法

由于乘除法不太好优化计算,通常通过对数的方法进行优化求解,损失函数如下:

\begin{aligned}J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))]\end{aligned}

def cost(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)first = np.multiply(-y, np.log(sigmoid(X * theta.T)))second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))return np.sum(first - second) / (len(X))

梯度下降

实际上这里只计算量梯度,并没有下降

def gradient(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)parameters = int(theta.ravel().shape[1])grad = np.zeros(parameters)error = sigmoid(X * theta.T) - yfor i in range(parameters):term = np.multiply(error, X[:,i])grad[i] = np.sum(term) / len(X)return grad

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677820.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.9 Binance_interface APP 现货交易-限单价平仓

Binance_interface APP 现货交易-限单价平仓 Github地址PyTed量化交易研究院 量化交易研究群(VX) py_ted目录 Binance_interface APP 现货交易-限单价平仓1. APP 现货交易-限单价平仓函数总览2. 模型实例化3. 同步 非堵塞 固定价格平仓(卖出)4. 同步 …

Cubase学习:音频转midi

大家好!我是诗书画唱!今天要分享的小技巧就是Cubase中的音频转midi的功能!希望对你有所帮助!以后我会在这个账号分享自己知道的很多小技巧!关注我!不迷路!大家也可以关注我后,在我的空间搜索关键词,找到各种对应的教程进行学习,非常的方便!而且自己的教程会尽可能纠…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Web组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Web组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Web组件 提供具有网页显示能力的Web组件,ohos.web.webview提供web控制能…

开发者福利,微软Xamarin不再收费

Build2016大会已经进行到第二天的主题演讲,微软在大会上宣布Xamarin对全部Visual Studio用户免费开放,而所有Visual Studio版本都会捆绑Xamarin这个跨平台开发工具。Xamarin免费是开发者的福利,因为原本Visual Studio就有免费的“社区版”&am…

爬虫练习——动态网页的爬取(股票和百度翻译)

动态网页也是字面意思:实时更新的那种 还有就是你在股票这个网站上,翻页。他的地址是不变的 是动态的加载,真正我不太清楚,只知道他是不变的。如果用静态网页的方法就不可行了。 静态网页的翻页,是网址是有规律的。 …

【国产MCU】-CH32V307-触摸按键检测(TKEY)

触摸按键检测(TKEY) 文章目录 触摸按键检测(TKEY)1、TKEY介绍2、TKEY使用实例触摸检测控制(TKEY)单元,借助ADC 模块的电压转换功能,通过将电容量转换为电压量进行采样,实现触摸按键检测功能。检测通道复用ADC 的16 个外部通道,通过ADC 模块的单次转换模式实现触摸按键…

人工智能时代的遥感技术

时相遥感影像变化检测是指对同一地理区域、不同时间获取的遥感影像进行自动变化发现、识别与 解释的遥感处理与分析技术。随着卫星遥感技术及人工智能理论方法的快速发展,基于多时相遥感影像数据驱 动和模型驱动的传统变化检测方法正朝着数据一模型一知识联合驱动的…

设计模式第五天|代理模式 7-小明买房子 装饰模式 8-咖啡加糖

目录 【设计模式专题之代理模式】7-小明买房子【设计模式专题装饰模式】8-咖啡加糖 【设计模式专题之代理模式】7-小明买房子 文章链接:卡码网设计模式 题目链接:7-小明买房子 这里注意在HomeAgent类里需要定义对象成员变量HomeBuyer,这里在实…

【MySQL】-12 MySQL索引(上篇MySQL索引类型前置-2-高性能的索引策略)

MySQL索引-高性能的索引策略 3 高性能的索引策略3.1 独立的列3.2 前缀索引和索引选择性3.3 多列索引3.4 选择合适的索引列顺序3.5 聚簇索引(Clustered Indexes)3.5.1 InnoDB和MyISAM的数据布局的比较3.5.2 按primary key的顺序插入行(InnoDB) 3.6 覆盖索引(Covering Indexes)3.…

Linux dump命令教程:如何安全快速备份你的文件系统(附实例详解和注意事项)

Linux dump命令介绍 dump命令在Linux中用于备份文件系统到某个存储设备。它备份的是整个文件系统,而不是单个文件。换句话说,它将所需的文件备份到磁带、磁盘或任何其他存储设备以进行安全存储。dump命令在Linux中只适用于ext2/ext3文件系统&#xff0c…

【计算几何】给定一组点的多边形面积

目录 一、说明二、有序顶点集三、无序顶点集3.1 凸多边形3.2 非凸多边形 四、结论 ​ 一、说明 计算多边形面积的方法有很多种。众所周知的多边形(如三角形、矩形、正方形、梯形等)的面积可以使用简单的数学公式计算。在这篇文章中,我将讨论…

Vulnhub靶机:hacksudo-search

一、介绍 运行环境:Virtualbox 攻击机:kali(10.0.2.15) 靶机:hacksudo-search(10.0.2.50) 目标:获取靶机root权限和flag 靶机下载地址:https://download.vulnhub.co…

寒假作业2024.2.6

1.现有无序序列数组为23,24,12,5,33,5347&#xff0c;请使用以下排序实现编程 函数1:请使用冒泡排序实现升序排序 函数2:请使用简单选择排序实现升序排序 函数3:请使用直接插入排序实现升序排序 函数4:请使用插入排序实现升序排序 #include <stdio.h> #include <stdl…

代码随想录|Day 15

Day 15 年三十 今天太忙了… 一、理论学习 二、刷题学习 104. 二叉树的最大深度 应该确实比以前有提升了 已经能写出这么精简的代码了 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeN…

掌握rm命令:Linux文件删除的艺术与安全指南

1. 引言 在Linux和UNIX-like系统中&#xff0c;rm&#xff08;remove&#xff09;命令是一个基础且强大的工具&#xff0c;用于删除文件和目录。由于其强大的功能&#xff0c;rm命令在日常使用中必须谨慎操作&#xff0c;以避免不小心删除重要数据。本文旨在提供一个全面的指南…

算法学习——LeetCode力扣二叉树篇1

算法学习——LeetCode力扣二叉树篇1 144. 二叉树的前序遍历 144. 二叉树的前序遍历 - 力扣&#xff08;LeetCode&#xff09; 描述 给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 示例 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&a…

3D裸眼技术行业研究:2026年市场投资规模为10.78亿元

3D裸眼技术大多处于研发阶段&#xff0c;它的研发分两个方向&#xff0c;一是硬件设备的研发&#xff0c;二为显示内容的处理研发。第二种已经开始小范围的商业运用。大众消费者接触的不多。从技术上来看&#xff0c;3D裸眼可分为光屏障式(Barrier)、柱状透镜(Lenticular Lens)…

MySQL如何定位慢查询

MySQL中定位慢查询通常涉及到以下几个步骤&#xff1a; 1. 慢查询日志 开启慢查询日志是识别慢查询的第一步。通过设置slow_query_log变量为1&#xff0c;MySQL会记录所有执行时间超过long_query_time秒的查询。 -- 开启慢查询日志 SET GLOBAL slow_query_log ON;-- 设置慢…

解释Python中的GIL(全局解释器锁)及其影响。描述Python中的垃圾回收机制。Python中的类变量和实例变量有什么区别

解释Python中的GIL&#xff08;全局解释器锁&#xff09;及其影响 Python中的GIL&#xff08;全局解释器锁&#xff09;是CPython解释器中的一个机制&#xff0c;用于同步线程的执行。GIL确保任何时候只有一个线程在执行Python字节码。这意味着&#xff0c;即使在多核或多处理器…

【第六天】c++虚函数多态

一、多态的概述 多态按字面的意思就是多种形态。当类之间存在层次结构&#xff0c;并且类之间是通过继承关联&#xff08;父类与子类&#xff09;时&#xff0c;就会用到多态。 C 多态意味着调用成员函数时&#xff0c;会根据调用函数的对象的类型来执行不同的函数。 静态多态&…