机器学习复习(8)——逻辑回归

目录

逻辑函数(Logistic Function)

逻辑回归模型的假设函数

从逻辑回归模型转换到最大似然函数过程

最大似然函数方法

梯度下降


逻辑函数(Logistic Function)

首先,逻辑函数,也称为Sigmoid函数,是一个常见的S形函数。其数学表达式为:

g(z)=\frac1{1+e^{-z}}

这个函数的特点是,其输出值总是在0和1之间。这个性质使得Sigmoid函数非常适合用来进行二分类,在机器学习中,它可以将任意实数映射到(0, 1)区间,用来表示某个事件发生的概率。例如,在逻辑回归模型中,我们可以用它来预测一个实例属于某个类别的概率。

def sigmoid(z):return 1 / (1 + np.exp(-z))

可视化:

nums = np.arange(-10, 10, step=1)fig, ax = plt.subplots(figsize=(12,8))
ax.plot(nums, sigmoid(nums), 'r')
plt.show()

逻辑回归模型的假设函数

逻辑回归模型的假设函数将输入特征X和参数θ的线性组合通过逻辑函数转换为一个概率值,其公式为:

h_\theta(x)=\frac1{1+e^{-\theta^TX}}

这里,θ^T X是参数θ和输入特征X的点积,它将多个输入特征线性组合成一个实数值,然后通过逻辑函数映射到(0, 1)区间。这个映射的结果可以被解释为在给定输入特征X的条件下,预测结果为正类的概率。

逻辑回归模型通过优化参数θ来最大化观测数据的似然函数,从而找到最佳的决策边界,以区分不同的类别。在实际应用中,逻辑回归是一个非常强大且广泛使用的分类算法,特别是在二分类问题中。 

从逻辑回归模型转换到最大似然函数过程

逻辑回归模型的假设函数定义为:

h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}}

为了找到最佳的参数θ,我们使用最大似然估计。对于二分类问题,给定的数据集D=\{(x^{(i)},y^{(i)})\}_{i=1}^{m},其中y^{(i)}\in\{0,1\},,我们可以写出似然函数:

L(\theta)=P(y|X;\theta)=\prod_{i=1}^m(h_\theta(x^{(i)}))^{y^{(i)}}(1-h_\theta(x^{(i)}))^{1-y^{(i)}}

这个似然函数表示了,在给定参数θ和输入X的条件下,观察到当前数据集y的概率。最大化这个似然函数等价于最大化观测数据在当前模型参数下出现的概率。

为了便于计算,通常对似然函数取对数,得到对数似然函数:

\log L(\theta)=\sum_{i=1}^m[y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log(1-h_\theta(x^{(i)}))]

 最大化对数似然函数相对简单,因为对数函数是单调的,且对数似然函数是关于θ的凸函数,容易通过梯度下降等优化算法找到全局最优解。

在机器学习中,我们通常通过最小化损失函数(而不是最大化似然函数)来训练模型。因此,我们将最大化对数似然问题转化为最小化损失函数问题。损失函数是对数似然函数的负值,平均化到每个样本上,即:

这就是逻辑回归中使用的损失函数,也称为对数损失或交叉熵损失。通过最小化这个损失函数,我们可以找到最佳的模型参数θ,使模型对训练数据的拟合程度最高,即最可能产生观测数据的参数。 

最大似然函数方法

由于乘除法不太好优化计算,通常通过对数的方法进行优化求解,损失函数如下:

\begin{aligned}J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))]\end{aligned}

def cost(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)first = np.multiply(-y, np.log(sigmoid(X * theta.T)))second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))return np.sum(first - second) / (len(X))

梯度下降

实际上这里只计算量梯度,并没有下降

def gradient(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)parameters = int(theta.ravel().shape[1])grad = np.zeros(parameters)error = sigmoid(X * theta.T) - yfor i in range(parameters):term = np.multiply(error, X[:,i])grad[i] = np.sum(term) / len(X)return grad

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677820.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Cubase学习:音频转midi

大家好!我是诗书画唱!今天要分享的小技巧就是Cubase中的音频转midi的功能!希望对你有所帮助!以后我会在这个账号分享自己知道的很多小技巧!关注我!不迷路!大家也可以关注我后,在我的空间搜索关键词,找到各种对应的教程进行学习,非常的方便!而且自己的教程会尽可能纠…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Web组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Web组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Web组件 提供具有网页显示能力的Web组件,ohos.web.webview提供web控制能…

爬虫练习——动态网页的爬取(股票和百度翻译)

动态网页也是字面意思:实时更新的那种 还有就是你在股票这个网站上,翻页。他的地址是不变的 是动态的加载,真正我不太清楚,只知道他是不变的。如果用静态网页的方法就不可行了。 静态网页的翻页,是网址是有规律的。 …

【MySQL】-12 MySQL索引(上篇MySQL索引类型前置-2-高性能的索引策略)

MySQL索引-高性能的索引策略 3 高性能的索引策略3.1 独立的列3.2 前缀索引和索引选择性3.3 多列索引3.4 选择合适的索引列顺序3.5 聚簇索引(Clustered Indexes)3.5.1 InnoDB和MyISAM的数据布局的比较3.5.2 按primary key的顺序插入行(InnoDB) 3.6 覆盖索引(Covering Indexes)3.…

【计算几何】给定一组点的多边形面积

目录 一、说明二、有序顶点集三、无序顶点集3.1 凸多边形3.2 非凸多边形 四、结论 ​ 一、说明 计算多边形面积的方法有很多种。众所周知的多边形(如三角形、矩形、正方形、梯形等)的面积可以使用简单的数学公式计算。在这篇文章中,我将讨论…

Vulnhub靶机:hacksudo-search

一、介绍 运行环境:Virtualbox 攻击机:kali(10.0.2.15) 靶机:hacksudo-search(10.0.2.50) 目标:获取靶机root权限和flag 靶机下载地址:https://download.vulnhub.co…

寒假作业2024.2.6

1.现有无序序列数组为23,24,12,5,33,5347&#xff0c;请使用以下排序实现编程 函数1:请使用冒泡排序实现升序排序 函数2:请使用简单选择排序实现升序排序 函数3:请使用直接插入排序实现升序排序 函数4:请使用插入排序实现升序排序 #include <stdio.h> #include <stdl…

算法学习——LeetCode力扣二叉树篇1

算法学习——LeetCode力扣二叉树篇1 144. 二叉树的前序遍历 144. 二叉树的前序遍历 - 力扣&#xff08;LeetCode&#xff09; 描述 给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 示例 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&a…

3D裸眼技术行业研究:2026年市场投资规模为10.78亿元

3D裸眼技术大多处于研发阶段&#xff0c;它的研发分两个方向&#xff0c;一是硬件设备的研发&#xff0c;二为显示内容的处理研发。第二种已经开始小范围的商业运用。大众消费者接触的不多。从技术上来看&#xff0c;3D裸眼可分为光屏障式(Barrier)、柱状透镜(Lenticular Lens)…

【第六天】c++虚函数多态

一、多态的概述 多态按字面的意思就是多种形态。当类之间存在层次结构&#xff0c;并且类之间是通过继承关联&#xff08;父类与子类&#xff09;时&#xff0c;就会用到多态。 C 多态意味着调用成员函数时&#xff0c;会根据调用函数的对象的类型来执行不同的函数。 静态多态&…

七、热身仪式(Warm-Up Rituals)

5.Warm Up Rituals 五、热身仪式 A warm up ritual is your per flight checklist you go through before you start focusing for a big session.It may be checking that you have water, that you don’t need to use the bathroom, that your phone is turned off or you’…

区间dp 笔记

区间dp一般是先枚举区间长度&#xff0c;再枚举左端点&#xff0c;再枚举分界点&#xff0c;时间复杂度为 环形石子合并 将 n 堆石子绕圆形操场排放&#xff0c;现要将石子有序地合并成一堆。 规定每次只能选相邻的两堆合并成新的一堆&#xff0c;并将新的一堆的石子数记做该…

C#实现矩阵乘法

目录 一、使用的方法 1.矩阵 2.矩阵的乘法原理 二、实例 1.源码 2.生成效果 一、使用的方法 矩阵相当于一个数组&#xff0c;主要用来存储一系列数&#xff0c;例如&#xff0c;mn矩阵是排列在m行和n列中的一系列数&#xff0c;mn矩阵可与一个np矩阵相乘&#xff0c;结果…

地铁智能运维要接哪些数据?智能运维能力包括哪些方面

在构建一个地铁智能运维系统中&#xff0c;我们需要接入哪些关键数据以实现高效和智能化的运维管理&#xff1f;地铁智能运维能力包含哪些方面&#xff1f;如何提升地铁系统的整体运营效率和安全性&#xff1f;  在构建地铁智能运维系统时&#xff0c;应连接以下关键数据&…

第十八篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:图像修复和恢复

传奇开心果短博文系列 系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、常用的图像修复与恢复技术二、插值方法示例代码三、基于纹理合成的方法示例代码四、基于边缘保持的方法示例代码五、基于图像修复模型的方法示例代码六、基于深度学习的方法示例代码七…

AutoSAR(基础入门篇)7.1-汽车电子开发软件DaVinci Developer界面简介

目录 一、Dev界面简介 二、Dev使用流程简介 一、Dev界面简介 经典的是更老的版本,博主这里用的是较新一点的版本,不过大家不必担心版本问题,因为操作几乎都一样。我们先简单浏览一遍这个界面,大致从 上往下看可以分为这么几部分: 1. 导航栏:File那一排 2. 工具栏&…

Redis集群模型

主从 全量同步 增量同步 哨兵 分片集群

微信小程序上传代码教程

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 小程序上传代码到gogs上面来 整体架构流程 小程序也要远程连接仓库&#xff0c;实现代码上传 技术名词解释 微信开发者工具gogs 技术细节 连接gogs仓库地址 微信小程序需要head将本地代码和gogs代码同步 小结 …

JAVA反射总结学习

初始反射反射的基本操作反射安全性问题 反射是指在Java运行状态中: 给定一个类对象(Class对象)&#xff0c;通过反射获取这个类对象(Class对象)的所有成员结构&#xff1b; 给定一个具体的对象&#xff0c;能够动态地调用它的方法及对任意属性值进行获取和赋值&#xff1b; …

[word] word如何打印背景和图片? #微信#其他#经验分享

word如何打印背景和图片&#xff1f; 日常办公中会经常要打印文件的&#xff0c;其实在文档的打印中也是有很多技巧的&#xff0c;可以按照自己的需求设定&#xff0c;下面给大家分享word如何打印背景和图片&#xff0c;一起来看看吧&#xff01; 1、打印背景和图片 在默认的…