大数据Flume--入门

文章目录

  • Flume
    • Flume 定义
    • Flume 基础架构
      • Agent
      • Source
      • Sink
      • Channel
      • Event
    • Flume 安装部署
      • 安装地址
      • 安装部署
    • Flume 入门案例
      • 监控端口数据官方案例
      • 实时监控单个追加文件
      • 实时监控目录下多个新文件
      • 实时监控目录下的多个追加文件

Flume

Flume 定义

Flume 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。
为什么选择Flume

Flume 基础架构

在这里插入图片描述

Agent

Agent 是一个JVM进程,它以事件的形式将数据从源头送至目的。

Agent 主要有3个部分组成,Source、Channel、Sink

Source

Source 是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种
格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、taildir、sequence generator、syslog、http、legacy。

Sink

Sink 不断地轮询 Channel 中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

Sink 组件目的地包括hdfs、logger、avro、thrift、ipc、file、HBase、solr、自定义。

Channel

Channel 是位于Source 和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel 是线程安全的,可以同时处理几个Source 的写入操作和几个Sink 的读取操作。

Flume 自带两种Channel:Memory ChannelFile Channel

Memory Channel 是内存中的队列。Memory Channel在不需要关心数据丢失的情景下适
用。如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。

File Channel 将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数
据。

Event

传输单元,Flume 数据传输的基本单元,以Event 的形式将数据从源头送至目的地。Event 由Header Body 两部分组成,Header用来存放该event的一些属性,为K-V结构,Body 用来存放该条数据,形式为字节数组。

Flume 安装部署

安装地址

(1)Flume 官网地址:http://flume.apache.org/
(2)文档查看地址:http://flume.apache.org/FlumeUserGuide.html
(3)下载地址:http://archive.apache.org/dist/flume
(4)Flume tar包
链接:https://pan.baidu.com/s/1O_CEiuHafNyuWSsrtZaydg?pwd=kw9k
提取码:kw9k

安装部署

(1)将apache-flume-1.9.0-bin.tar.gz 上传到 linux 的/opt/software 目录下

(2)解压apache-flume-1.9.0-bin.tar.gz 到/opt/module/目录下

[yudan@hadoop102 software]$ tar -zxf /opt/software/apache-flume-1.9.0-bin.tar.gz -C /opt/module/ 

(3)修改apache-flume-1.9.0-bin 的名称为flume

[yudan@hadoop102 module]$ mv /opt/module/apache-flume-1.9.0-bin /opt/module/flume 

(4)将lib文件夹下的guava-11.0.2.jar删除以兼容Hadoop 3.1.3

[yudan@hadoop102 lib]$  rm /opt/module/flume/lib/guava-11.0.2.jar 

Flume 入门案例

监控端口数据官方案例

1)案例需求:

使用Flume监听一个端口,收集该端口数据,并打印到控制台。

2)需求分析:
在这里插入图片描述
3)实现步骤:

(1)安装netcat工具

[yudan@hadoop102 software]$ sudo yum install -y nc

(2)判断44444端口是否被占用

[yudan@hadoop102 flume-telnet]$ sudo netstat -nlp | grep 44444

(3)创建Flume Agent配置文件flume-netcat-logger.conf

(4)在flume目录下创建job文件夹并进入job文件夹。

[yudan@hadoop102 flume]$ mkdir job 
[yudan@hadoop102 flume]$ cd job/ 

(5)在job文件夹下创建Flume Agent配置文件flume-netcat-logger.conf

[yudan@hadoop102 job]$ vim flume-netcat-logger.conf

(6)在flume-netcat-logger.conf 文件中添加如下内容。

# Name the components on this agent 
a1.sources = r1 
a1.sinks = k1 
a1.channels = c1 # Describe/configure the source 
a1.sources.r1.type = netcat 
a1.sources.r1.bind = localhost 
a1.sources.r1.port = 44444 # Describe the sink 
a1.sinks.k1.type = logger # Use a channel which buffers events in memory 
a1.channels.c1.type = memory 
a1.channels.c1.capacity = 1000 
a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channel 
a1.sources.r1.channels = c1 
a1.sinks.k1.channel = c1 

配置文件解析
(7)先开启flume监听端口

  • 第一种写法:

      [yudan@hadoop102 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console 
    
  • 第二种写法:

      [yudan@hadoop102 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console 
    
  • 参数说明:

    • –conf/-c:表示配置文件存储在conf/目录
    • –name/-n:表示给agent起名为a1
    • –conf-file/-f:flume 本次启动读取的配置文件是在 job 文件夹下的 flume-telnet.conf
      文件。
    • -Dflume.root.logger=INFO,console :-D 表示 flume 运行时动态修改 flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。

(8)使用netcat工具向本机的44444端口发送内容

[yudan@hadoop102 ~]$ nc localhost 44444 
hello  
yudan 

(9)在Flume监听页面观察接收数据情况

实时监控单个追加文件

1)案例需求:实时监控Hive日志,并上传到HDFS中

2)需求分析:
实时读取本地文件到HDFS案例
3)实现步骤:

(1)Flume 要想将数据输出到HDFS,依赖Hadoop相关jar包

检查/etc/profile.d/my_env.sh 文件,确认 Hadoop和 Java 环境变量配置正确

JAVA_HOME=/opt/module/jdk1.8.0_212 
HADOOP_HOME=/opt/module/hadoop-3.1.3 
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin 
export PATH JAVA_HOME HADOOP_HOME

(2)创建flume-file-hdfs.conf 文件

[yudan@hadoop102 job]$ vim flume-file-hdfs.conf

注:要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行Linux 命令来读取文件。

# Name the components on this agent 
a2.sources = r2 
a2.sinks = k2 
a2.channels = c2 # Describe/configure the source 
a2.sources.r2.type = exec 
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log # Describe the sink 
a2.sinks.k2.type = hdfs 
a2.sinks.k2.hdfs.path = hdfs://hadoop102:8020/flume/%Y%m%d/%H 
#上传文件的前缀 
a2.sinks.k2.hdfs.filePrefix = logs- 
#是否按照时间滚动文件夹 
a2.sinks.k2.hdfs.round = true 
#多少时间单位创建一个新的文件夹 
a2.sinks.k2.hdfs.roundValue = 1 
#重新定义时间单位 
a2.sinks.k2.hdfs.roundUnit = hour 
#是否使用本地时间戳 
a2.sinks.k2.hdfs.useLocalTimeStamp = true 
#积攒多少个Event才flush到HDFS一次 
a2.sinks.k2.hdfs.batchSize = 100 
#设置文件类型,可支持压缩 
a2.sinks.k2.hdfs.fileType = DataStream 
#多久生成一个新的文件 
a2.sinks.k2.hdfs.rollInterval = 60 
#设置每个文件的滚动大小 
a2.sinks.k2.hdfs.rollSize = 134217700 
#文件的滚动与Event数量无关 
a2.sinks.k2.hdfs.rollCount = 0 # Use a channel which buffers events in memory 
a2.channels.c2.type = memory 
a2.channels.c2.capacity = 1000 
a2.channels.c2.transactionCapacity = 100 # Bind the source and sink to the channel 
a2.sources.r2.channels = c2 
a2.sinks.k2.channel = c2 

a2.sinks.k2.hdfs.path = hdfs://hadoop102:端口号/flume/%Y%m%d/%H
端口号是NameNode的地址,这个端口号在/opt/module/hadoop-3.1.3/etc/hadoop下core-site.xml文件中的fs.defaultFS配置过

注意:对于所有与时间相关的转义序列,Event Header中必须存在以 “timestamp”的
key(除非hdfs.useLocalTimeStamp设置为true,此方法会使用TimestampInterceptor自
动添加timestamp)。

a3.sinks.k3.hdfs.useLocalTimeStamp = true

在这里插入图片描述
(3)运行Flume

[yudan@hadoop102 flume]$ bin/flume-ng agent -c conf/ -n a2 -f job/flume-file-hdfs.conf

(4)开启Hadoop和Hive并操作Hive产生日志

[yudan@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh 
[yudan@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh[yudan@hadoop102 hive]$ bin/hive 
hive (default)>

(5)在HDFS上查看文件。

实时监控目录下多个新文件

1)案例需求:使用Flume监听整个目录的文件,并上传至HDFS

2)需求分析:
在这里插入图片描述
3)实现步骤:

(1)创建配置文件flume-dir-hdfs.conf

创建一个文件 
[yudan@hadoop102 job]$ vim flume-dir-hdfs.conf
# 添加以下内容a3.sources = r3 
a3.sinks = k3 
a3.channels = c3 # Describe/configure the source 
a3.sources.r3.type = spooldir 
a3.sources.r3.spoolDir = /opt/module/flume/upload 
a3.sources.r3.fileSuffix = .COMPLETED 
a3.sources.r3.fileHeader = true 
#忽略所有以.tmp结尾的文件,不上传 
a3.sources.r3.ignorePattern = ([^ ]*\.tmp) # Describe the sink 
a3.sinks.k3.type = hdfs 
a3.sinks.k3.hdfs.path = 
hdfs://hadoop102:8020/flume/upload/%Y%m%d/%H 
#上传文件的前缀 
a3.sinks.k3.hdfs.filePrefix = upload- 
#是否按照时间滚动文件夹 
a3.sinks.k3.hdfs.round = true 
#多少时间单位创建一个新的文件夹 
a3.sinks.k3.hdfs.roundValue = 1 
#重新定义时间单位 
a3.sinks.k3.hdfs.roundUnit = hour 
#是否使用本地时间戳 
a3.sinks.k3.hdfs.useLocalTimeStamp = true 
#积攒多少个Event才flush到HDFS一次 
a3.sinks.k3.hdfs.batchSize = 100 
#设置文件类型,可支持压缩 
a3.sinks.k3.hdfs.fileType = DataStream 
#多久生成一个新的文件 
a3.sinks.k3.hdfs.rollInterval = 60 
#设置每个文件的滚动大小大概是128M 
a3.sinks.k3.hdfs.rollSize = 134217700 
#文件的滚动与Event数量无关 
a3.sinks.k3.hdfs.rollCount = 0 # Use a channel which buffers events in memory 
a3.channels.c3.type = memory 
a3.channels.c3.capacity = 1000 
a3.channels.c3.transactionCapacity = 100 # Bind the source and sink to the channel 
a3.sources.r3.channels = c3 
a3.sinks.k3.channel = c3 

在这里插入图片描述
(2)启动监控文件夹命令

[yudan@hadoop102 flume]$ bin/flume-ng agent -c conf/ -n a3 -f job/flume-dir-hdfs.conf 

说明:在使用Spooling Directory Source 时,不要在监控目录中创建并持续修改文件;上传完成的文件会以.COMPLETED结尾;被监控文件夹每500毫秒扫描一次文件变动。

(3)向upload文件夹中添加文件

在/opt/module/flume 目录下创建upload 文件夹

[yudan@hadoop102 flume]$ mkdir upload 

向upload文件夹中添加文件

[yudan@hadoop102 upload]$ touch 1.txt 
[yudan@hadoop102 upload]$ touch 2.tmp 
[yudan@hadoop102 upload]$ touch 3.log 

(4)查看HDFS上的数据

实时监控目录下的多个追加文件

Exec source 适用于监控一个实时追加的文件,不能实现断点续传;Spooldir Source适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步;而Taildir Source适合用于监听多个实时追加的文件,并且能够实现断点续传。

1)案例需求:使用Flume监听整个目录的实时追加文件,并上传至HDFS

2)需求分析:
在这里插入图片描述
3)实现步骤:

(1)创建配置文件flume-taildir-hdfs.conf

创建一个文件 
[yudan@hadoop102 job]$ vim flume-taildir-hdfs.conf 
# 添加如下内容 
a3.sources = r3 
a3.sinks = k3 
a3.channels = c3 # Describe/configure the source 
a3.sources.r3.type = TAILDIR 
a3.sources.r3.positionFile = /opt/module/flume/tail_dir.json 
a3.sources.r3.filegroups = f1 f2 
a3.sources.r3.filegroups.f1 = /opt/module/flume/files/.*file.* 
a3.sources.r3.filegroups.f2 = /opt/module/flume/files2/.*log.* # Describe the sink 
a3.sinks.k3.type = hdfs 
a3.sinks.k3.hdfs.path = 
hdfs://hadoop102:8020/flume/upload2/%Y%m%d/%H 
#上传文件的前缀 
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹 
a3.sinks.k3.hdfs.round = true 
#多少时间单位创建一个新的文件夹 
a3.sinks.k3.hdfs.roundValue = 1 
#重新定义时间单位 
a3.sinks.k3.hdfs.roundUnit = hour 
#是否使用本地时间戳 
a3.sinks.k3.hdfs.useLocalTimeStamp = true 
#积攒多少个Event才flush到HDFS一次 
a3.sinks.k3.hdfs.batchSize = 100 
#设置文件类型,可支持压缩 
a3.sinks.k3.hdfs.fileType = DataStream 
#多久生成一个新的文件 
a3.sinks.k3.hdfs.rollInterval = 60 
#设置每个文件的滚动大小大概是128M 
a3.sinks.k3.hdfs.rollSize = 134217700 
#文件的滚动与Event数量无关 
a3.sinks.k3.hdfs.rollCount = 0 # Use a channel which buffers events in memory 
a3.channels.c3.type = memory 
a3.channels.c3.capacity = 1000 
a3.channels.c3.transactionCapacity = 100 # Bind the source and sink to the channel 
a3.sources.r3.channels = c3 
a3.sinks.k3.channel = c3

在这里插入图片描述
(2)启动监控文件夹命令

[yudan@hadoop102 flume]$ bin/flume-ng agent -cconf/ -n a3 -f job/flume-taildir-hdfs.conf

(3)向files文件夹中追加内容

在/opt/module/flume目录下创建files文件夹 
[yudan@hadoop102 flume]$ mkdir files 向upload文件夹中添加文件 
[yudan@hadoop102 files]$ echo hello >> file1.txt 
[yudan@hadoop102 files]$ echo atguigu >> file2.txt 

(4)查看HDFS上的数据

Taildir 说明:

Taildir Source 维护了一个json 格式的position File,其会定期的往position File中更新每个文件读取到的最新的位置,因此能够实现断点续传。Position File的格式如下:

{"inode":2496272,"pos":12,"file":"/opt/module/flume/files/file1.txt"} 
{"inode":2496275,"pos":12,"file":"/opt/module/flume/files/file2.txt"}

注:Linux中储存文件元数据的区域就叫做inode,每个inode都有一个号码,操作系统用inode 号码来识别不同的文件,Unix/Linux系统内部不使用文件名,而使用inode号码来识别文件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677515.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python算法100例-1.4 百钱百鸡

1.问题描述2.问题分析3.算法设计4.知识点补充5.确定程序框架6.确定公鸡、母鸡和小鸡数量7.完整的程序8.问题拓展 完整源代码项目地址,关注博主私信’源代码’后可获取 1.问题描述 中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱百鸡问题”&#xf…

动态规划的一个初步学习

啥叫动态规划 在我们写很多的题目时,常常可以用暴力枚举来写,缺点就是速度太慢了。如果我们用一个数组或者哈希表(虽然我还没学过哈希表)将之前暴力枚举的数据储存起来,当再一次枚举到这个数字的时候就直接调用数组或…

Android---Jetpack Compose学习002

Compose 布局。Compose 布局的目标:1)实现高性能;2)让开发者能够轻松编写自定义布局;3)在 Compose 中,通过避免多次测量布局子级可实现高性能。如果需要进行多次测量,Compose 具有一…

分享86个表单按钮JS特效,总有一款适合您

分享86个表单按钮JS特效,总有一款适合您 86个表单按钮JS特效下载链接:https://pan.baidu.com/s/1WwQGFPWv8464JBcuEMJZ_Q?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,…

spring boot学习第十二篇:mybatis框架中调用存储过程控制事务性

1、MySQL方面&#xff0c;已经准备好了存储过程&#xff0c;参考&#xff1a;MYSQL存储过程&#xff08;含入参、出参&#xff09;-CSDN博客 2、pom.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"…

SpringCloud--Eureka注册中心服务搭建注册以及服务发现

注意springboot以及springcloud版本&#xff0c;可能有莫名其妙的错误&#xff0c;这里使用的是springboot-2.6.13&#xff0c;springcloud-2021.0.5 一&#xff0c;Eureka-Server搭建&#xff1a; 1.创建项目&#xff1a;引入依赖 <dependency><groupId>org.sp…

[C/C++] -- Boost库、Muduo库编译安装使用

1.Muduo库 Muduo 是一个基于 C11 的高性能网络库&#xff0c;其核心是事件驱动、非阻塞 I/O、线程池等技术&#xff0c;以实现高并发、高性能的网络通信。Muduo 库主要由陈硕先生开发维护&#xff0c;已经成为 C 服务器程序员的常用工具之一。 Muduo 库的主要特点&#xff1a…

Javaweb之SpringBootWeb案例之事务管理的详细解析

1. 事务管理 1.1 事务回顾 在数据库阶段我们已学习过事务了&#xff0c;我们讲到&#xff1a; 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位。事务会把所有的操作作为一个整体&#xff0c;一起向数据库提交或者是撤销操作请求。所以这组操作要么同时成功&am…

MySQL数据库⑥_内置函数(日期函数+字符串函数+数学函数等)

目录 1. 日期函数 2. 字符串函数 3. 数学函数 4. 其它函数 本篇完。 1. 日期函数 MySQL常用的日期函数如下&#xff1a; 函数名称描述current_date()获取当前日期current_time()获取当前时间current_timestamp()获取当前时间戳now()获取当前日期时间date(datetime)获取d…

深度学习的进展及其在各领域的应用

深度学习&#xff0c;作为人工智能的核心分支&#xff0c;近年来在全球范围内引起了广泛的关注和研究。它通过模拟人脑的学习机制&#xff0c;构建复杂的神经网络结构&#xff0c;从大量数据中学习并提取有用的特征表示&#xff0c;进而解决各种复杂的模式识别问题。 一、深度…

百面嵌入式专栏(面试题)驱动开发面试题汇总1.0

沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将介绍驱动开发面试题 。 1、Linux驱动程序的功能是什么? 对设备初始化和释放。进行内核与硬件的数据交互。检测和处理设备出现的错误。2、内核程序中申请内存使用什么函数? 答案:kmalloc()、kzalloc()、vm…

C++Linux网络编程day02:select模型

本文是我的学习笔记&#xff0c;学习路线跟随Github开源项目&#xff0c;链接地址&#xff1a;30dayMakeCppServer 文章目录 select模型fd_set结构体 timeval结构体文件描述符的就绪条件带外数据与普通数据socket的状态 select模型 select是Linux下的一个IO复用模型&#xff…

Flink基础篇|002_Flink前世今生

&#x1f4eb; 作者简介&#xff1a;「六月暴雪飞梨花」&#xff0c;专注于研究Java&#xff0c;就职于科技型公司后端工程师 &#x1f3c6; 近期荣誉&#xff1a;华为云云享专家、阿里云专家博主、腾讯云优秀创作者 &#x1f525; 三连支持&#xff1a;欢迎 ❤️关注、&#x…

latex双列排版下,插入表格但在单独一页出现,换页出现

问题描述&#xff1a; 在双列排版中&#xff0c;由于需要插入单列的整块表格&#xff0c;但表格出现在新的一页&#xff0c;如图&#xff1a; 解决&#xff1a; 注意是hb&#xff0c;不是htbp \begin{figure*}[hb] \centering \includegraphics[scale0.4]{img1.jpg} \caption…

2-2 动手学深度学习v2-损失函数-笔记

损失函数&#xff0c;用来衡量预测值和真实值之间的区别。是机器学习里面一个非常重要的概念。 三个常用的损失函数 L2 loss、L1 loss、Huber’s Robust loss 均方损失 L2 Loss l ( y , y ′ ) 1 2 ( y − y ′ ) 2 l(y,y^{\prime})\frac{1}{2}(y-y^{\prime})^{2} l(y,y′)21…

飞天使-k8s知识点14-kubernetes散装知识点3-Service与Ingress服务发现控制器

文章目录 Service与Ingress服务发现控制器存储、配置与角色 Service与Ingress服务发现控制器 在 Kubernetes 中&#xff0c;Service 和 Ingress 是两种不同的资源类型&#xff0c;它们都用于处理网络流量&#xff0c;但用途和工作方式有所不同。Service 是 Kubernetes 中的一个…

【Flink入门修炼】1-2 Mac 搭建 Flink 源码阅读环境

在后面学习 Flink 相关知识时&#xff0c;会深入源码探究其实现机制。因此&#xff0c;需要现在本地配置好源码阅读环境。 本文搭建环境&#xff1a; Mac M1&#xff08;Apple Silicon&#xff09;Java 8IDEAFlink 官方源码 一、 下载 Flink 源码 github 地址&#xff1a;h…

【设计模式】23中设计模式笔记

设计模式分类 模板方法模式 核心就是设计一个部分抽象类。 这个类具有少量具体的方法&#xff0c;和大量抽象的方法&#xff0c;具体的方法是为外界提供服务的点&#xff0c;具体方法中定义了抽象方法的执行序列 装饰器模式 现在有一个对象A&#xff0c;希望A的a方法被修饰 …

一、基础算法之排序、二分、高精度、前缀和与差分、双指针算法、位运算、离散化、区间合并内容。

1.快速排序 算法思想&#xff1a;选择基准元素&#xff0c;比基准元素小的放左边&#xff0c;比基准元素大的放右边。每趟至少一个元素排好。 每一趟实现步骤&#xff1a; low>high&#xff0c;返回&#xff0c;排序完成选取基准元素xa[low],ilow,jhigh当i<j时&#x…

ZOJ 3537 Cake 【区间DP + 凸多边形三角剖分】

Cake 题意 给定平面坐标上的 n n n 个点&#xff0c;如果是凸多边形的话&#xff0c;就用最少的花费把这个多边形剖分成若干个三角形&#xff0c;剖分的线段端点只能是原多边形的顶点&#xff0c;一条线段的花费为&#xff1a; ∣ x i x j ∣ ∣ y i y j ∣ m o d p |x_i…