动态规划的一个初步学习

啥叫动态规划

在我们写很多的题目时,常常可以用暴力枚举来写,缺点就是速度太慢了。如果我们用一个数组或者哈希表(虽然我还没学过哈希表)将之前暴力枚举的数据储存起来,当再一次枚举到这个数字的时候就直接调用数组或者哈希表里面的数据,这样就能节省很多时间。所以动态规划就是带数组记忆的递归,所以动态规划也往往叫做记忆化搜索

1.状态转移方程是啥:状态转移方程根据我的理解就是,可以根据前面的一维数组(或者二维数组)推出接下来的数组中的值,优点类似于数学里面的数列里面的递推公式,在动态规划里面比较核心的的就是想出其递推公式,想出来后题目也会变得通透的多。

做动态规划的五步骤

1.dp数组以及下标的含义。
2.递推公式。
3.dp数组的初始化。
4.遍历顺序。
5.打印dp数组

01背包问题

优化前:用一个二维数组来存放数据。优化后:用一个一维数组来存放数据(所以01背包也是由相对固定的模板的)

优化前:二维数组进行存储
首先根据5步曲来,分析一下dp数组的含义:下标为0到i之间的物品(不同的物品有着不同的价值),任取放进容量为j的背包里面,而dp数组的具体值就是放进去这个物品的最大价值。

递推公式不放物品dp[i-1][j];
                      放物品dp[i-1][j-wight[i]]+value[i];(这个value[i]就是i这个物品的价值,同时还要声明一下,这里其实还要做一下判断,看是否有超过背包的最大容量)

最终的模样:dp[i][j]=max(dp[i-1][j],dp[i-1][j-wight[i]]+value[i]);

dp数组的初始化:需要将第一个物品那一行给初始化,其他的都初始化为0.

优化后:使用滚动数组也就是使用一维数组来实现价值最大化   
形象一点就是将这个二维矩阵压缩,或者是将这个贴在一个圆柱上,每次进行到下一个物品的时候就将这个圆柱转一下就切换到下一个物品了。
含义:dp数组里面存放的依然是物品的价值,而下标就是和未优化前的二维数组中的j一样:容量为j的背包所能装的最大价值为dp[j];

递归公式:dp[j]=max(dp[j],dp[j-wight[i]]+value[i]); 这个就是相当于将前一个物品给拷贝过来一份,所以在这里的dp[j]就是相当于前一层的数据。

 列题

过河卒

 做动态规划最重要的就是推出其递推公式,一般很难想到,所以这里建议先在二维数组先写几个数,然后看看这些数之间有没有什么关系(数学归纳法:先写出来几个看看这些数字有啥关系,然后如果找到规律了就直接使用)
(该图来自b站up:LetsLearning)

写几个数字就能发现,在没有马的情况下二维数组中的每一个数的值都是由它的上面和左边加构成,所以通过这里就可以的得到递推公式;a[i][j]=a[i-1][j]+a[i][j-1]; 

接下来就是加上马的干扰,我们先将整个棋盘全部初始化为1(这样做的目的是为了将0行和0列初始化为1,方便接下来的操作),我们用一个方向数组(这个数组里面记载的是马的行走规则,集“日”字型走),用一个for循环将马走到的地方全部初始化为0,这样进行递推的时候就方便进行加,如果加上马的话就需要堆递推进行一点小改动,主要就是体现在第0行和第0列的改动,这个时候第0行和第0列的的递推公式就要改成    a[i][j]=a[i][j-1];    a[i][j]=a[i-1][j]; ,因为马做过的地方的左边和上面都不能走,如果马的这个地方为0,那么后面相加的时候也会为0,就不会对后面的造成影响。
代码如下(中间这些被注释掉的没有必要看,就是用来检查我有没有做对)(对了a数组要开long long类型的,不然有些数据会过不了)

#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll a[35][35];
int n,m;
int x,y;
int dx[9]={0,-1,-2,-2,-1, 1, 2, 2,1};
int dy[9]={0,-2,-1, 1, 2,-2,-1, 1,2};
int main()
{//初始化为1cin>>n>>m>>x>>y;for(int i=0;i<=n;i++){for(int j=0;j<=m;j++){a[i][j]=1;}}//马的存在
for(int i=0;i<=8;i++){int tx=x+dx[i];int ty=y+dy[i];if(tx<0||tx>n||ty>m||ty<0)continue;elsea[tx][ty]=0;
}
//检查二维数组
//	for(int i=0;i<=n;i++){
//		for(int j=0;j<=m;j++)
//		printf("%5d ",a[i][j]);
//		printf("\n");
//	}
//接下来就是递推公式for(int i=0;i<=n;i++){for(int j=0;j<=m;j++){if(i==0&&j==0)continue;if(a[i][j]==0)//这个点是马走过的,那这里的值就不能走,就应该为0,由于之前我们已经将马走过的地方赋值为0,所以是可以跳过的continue;if(i==0)a[i][j]=a[i][j-1];else if(j==0)a[i][j]=a[i-1][j];elsea[i][j]=a[i-1][j]+a[i][j-1];}}
//检查二维数组
//	for(int i=0;i<=n;i++){
//		for(int j=0;j<=m;j++)
//		printf("%5d ",a[i][j]);
//		printf("\n");
//	}cout<<a[n][m]<<endl;return 0;	
}

守望者的逃离

思路:先讲一遍不用动态规划来写的方法,我么用一个s1和s2分别代表着不用闪现走的路程,和用闪现走的路程,两边同时开弓。每次进行完一次计算都需要将s1和s2进行一次比较将大者的值赋给s1(由于s1是最特殊的,最后我们输出的变量的值也是s1的值)(其实使用动态规划也是使用这样一个思路)其中这里面很巧妙的思路就是使用一个for循环来代表时间的推进还有使用s1,s2两边同时开工,然后这个路程的取值往往都是取最大(我还没学过贪心)。

代码如下:

#include<iostream>
using namespace std;
int m,s,t;
int main()
{cin>>m>>s>>t;int s1=0,s2=0;for(int i=1;i<=t;i++){s1+=17;if(m>=10){s2+=60;m-=10;}else{m+=4;}if(s2>s1)s1=s2;if(s1>=s){cout<<"Yes"<<endl;cout<<i<<endl;return 0;}}cout<<"No"<<endl;cout<<s1<<endl;return 0;
}

接下就是讲解使用dp数组求解:
思路:和上面的思路其实一样,在这里我感觉到动态规划就是要使用前一个数组元素的值来进行求解(及最关键的就是看大问题是否能够被小问题推出,如果已经看出来这一点那么递推公式也就能写出来了),先将dp数组全部用闪现的方式记录每一秒的运动路程。在进行完全部过程后再使用一个for循环来检查就用看是dp[i]大还是dp[i-1]+17大,如果是后者大那么就将这个值赋给dp[i](我怎么感觉有一点01背包的思想在里面).

#include<iostream>
using namespace std;
int dp[500000000];
int main()
{int m,s,t;cin>>m>>s>>t;for(int i=1;i<=t;i++){if(m>=10){dp[i]=dp[i-1]+60;m-=10;}else{dp[i]=dp[i-1];m+=4;}}for(int i=1;i<=t;i++){if(dp[i]<dp[i-1]+17)dp[i]=dp[i-1]+17;if(dp[i]>=s){printf("Yes\n%d",i);return 0;}}printf("No\n%d",dp[t]);return 0;
}


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677509.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android---Jetpack Compose学习002

Compose 布局。Compose 布局的目标&#xff1a;1&#xff09;实现高性能&#xff1b;2&#xff09;让开发者能够轻松编写自定义布局&#xff1b;3&#xff09;在 Compose 中&#xff0c;通过避免多次测量布局子级可实现高性能。如果需要进行多次测量&#xff0c;Compose 具有一…

分享86个表单按钮JS特效,总有一款适合您

分享86个表单按钮JS特效&#xff0c;总有一款适合您 86个表单按钮JS特效下载链接&#xff1a;https://pan.baidu.com/s/1WwQGFPWv8464JBcuEMJZ_Q?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;…

spring boot学习第十二篇:mybatis框架中调用存储过程控制事务性

1、MySQL方面&#xff0c;已经准备好了存储过程&#xff0c;参考&#xff1a;MYSQL存储过程&#xff08;含入参、出参&#xff09;-CSDN博客 2、pom.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"…

SpringCloud--Eureka注册中心服务搭建注册以及服务发现

注意springboot以及springcloud版本&#xff0c;可能有莫名其妙的错误&#xff0c;这里使用的是springboot-2.6.13&#xff0c;springcloud-2021.0.5 一&#xff0c;Eureka-Server搭建&#xff1a; 1.创建项目&#xff1a;引入依赖 <dependency><groupId>org.sp…

[C/C++] -- Boost库、Muduo库编译安装使用

1.Muduo库 Muduo 是一个基于 C11 的高性能网络库&#xff0c;其核心是事件驱动、非阻塞 I/O、线程池等技术&#xff0c;以实现高并发、高性能的网络通信。Muduo 库主要由陈硕先生开发维护&#xff0c;已经成为 C 服务器程序员的常用工具之一。 Muduo 库的主要特点&#xff1a…

Javaweb之SpringBootWeb案例之事务管理的详细解析

1. 事务管理 1.1 事务回顾 在数据库阶段我们已学习过事务了&#xff0c;我们讲到&#xff1a; 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位。事务会把所有的操作作为一个整体&#xff0c;一起向数据库提交或者是撤销操作请求。所以这组操作要么同时成功&am…

MySQL数据库⑥_内置函数(日期函数+字符串函数+数学函数等)

目录 1. 日期函数 2. 字符串函数 3. 数学函数 4. 其它函数 本篇完。 1. 日期函数 MySQL常用的日期函数如下&#xff1a; 函数名称描述current_date()获取当前日期current_time()获取当前时间current_timestamp()获取当前时间戳now()获取当前日期时间date(datetime)获取d…

深度学习的进展及其在各领域的应用

深度学习&#xff0c;作为人工智能的核心分支&#xff0c;近年来在全球范围内引起了广泛的关注和研究。它通过模拟人脑的学习机制&#xff0c;构建复杂的神经网络结构&#xff0c;从大量数据中学习并提取有用的特征表示&#xff0c;进而解决各种复杂的模式识别问题。 一、深度…

百面嵌入式专栏(面试题)驱动开发面试题汇总1.0

沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将介绍驱动开发面试题 。 1、Linux驱动程序的功能是什么? 对设备初始化和释放。进行内核与硬件的数据交互。检测和处理设备出现的错误。2、内核程序中申请内存使用什么函数? 答案:kmalloc()、kzalloc()、vm…

C++Linux网络编程day02:select模型

本文是我的学习笔记&#xff0c;学习路线跟随Github开源项目&#xff0c;链接地址&#xff1a;30dayMakeCppServer 文章目录 select模型fd_set结构体 timeval结构体文件描述符的就绪条件带外数据与普通数据socket的状态 select模型 select是Linux下的一个IO复用模型&#xff…

Flink基础篇|002_Flink前世今生

&#x1f4eb; 作者简介&#xff1a;「六月暴雪飞梨花」&#xff0c;专注于研究Java&#xff0c;就职于科技型公司后端工程师 &#x1f3c6; 近期荣誉&#xff1a;华为云云享专家、阿里云专家博主、腾讯云优秀创作者 &#x1f525; 三连支持&#xff1a;欢迎 ❤️关注、&#x…

latex双列排版下,插入表格但在单独一页出现,换页出现

问题描述&#xff1a; 在双列排版中&#xff0c;由于需要插入单列的整块表格&#xff0c;但表格出现在新的一页&#xff0c;如图&#xff1a; 解决&#xff1a; 注意是hb&#xff0c;不是htbp \begin{figure*}[hb] \centering \includegraphics[scale0.4]{img1.jpg} \caption…

2-2 动手学深度学习v2-损失函数-笔记

损失函数&#xff0c;用来衡量预测值和真实值之间的区别。是机器学习里面一个非常重要的概念。 三个常用的损失函数 L2 loss、L1 loss、Huber’s Robust loss 均方损失 L2 Loss l ( y , y ′ ) 1 2 ( y − y ′ ) 2 l(y,y^{\prime})\frac{1}{2}(y-y^{\prime})^{2} l(y,y′)21…

飞天使-k8s知识点14-kubernetes散装知识点3-Service与Ingress服务发现控制器

文章目录 Service与Ingress服务发现控制器存储、配置与角色 Service与Ingress服务发现控制器 在 Kubernetes 中&#xff0c;Service 和 Ingress 是两种不同的资源类型&#xff0c;它们都用于处理网络流量&#xff0c;但用途和工作方式有所不同。Service 是 Kubernetes 中的一个…

【Flink入门修炼】1-2 Mac 搭建 Flink 源码阅读环境

在后面学习 Flink 相关知识时&#xff0c;会深入源码探究其实现机制。因此&#xff0c;需要现在本地配置好源码阅读环境。 本文搭建环境&#xff1a; Mac M1&#xff08;Apple Silicon&#xff09;Java 8IDEAFlink 官方源码 一、 下载 Flink 源码 github 地址&#xff1a;h…

【设计模式】23中设计模式笔记

设计模式分类 模板方法模式 核心就是设计一个部分抽象类。 这个类具有少量具体的方法&#xff0c;和大量抽象的方法&#xff0c;具体的方法是为外界提供服务的点&#xff0c;具体方法中定义了抽象方法的执行序列 装饰器模式 现在有一个对象A&#xff0c;希望A的a方法被修饰 …

一、基础算法之排序、二分、高精度、前缀和与差分、双指针算法、位运算、离散化、区间合并内容。

1.快速排序 算法思想&#xff1a;选择基准元素&#xff0c;比基准元素小的放左边&#xff0c;比基准元素大的放右边。每趟至少一个元素排好。 每一趟实现步骤&#xff1a; low>high&#xff0c;返回&#xff0c;排序完成选取基准元素xa[low],ilow,jhigh当i<j时&#x…

ZOJ 3537 Cake 【区间DP + 凸多边形三角剖分】

Cake 题意 给定平面坐标上的 n n n 个点&#xff0c;如果是凸多边形的话&#xff0c;就用最少的花费把这个多边形剖分成若干个三角形&#xff0c;剖分的线段端点只能是原多边形的顶点&#xff0c;一条线段的花费为&#xff1a; ∣ x i x j ∣ ∣ y i y j ∣ m o d p |x_i…

部署一个在线OCR工具

效果 安装 1.拉取镜像 # 从 dockerhub pull docker pull mmmz/trwebocr:latest 2.运行容器 # 运行镜像 docker run -itd --rm -p 10058:8089 --name trwebocr mmmz/trwebocr:latest 使用 打开浏览器输入 http://192.168.168.110:10058/ 愉快滴使用吧

亚马逊认证考试系列 - 知识点 - LightSail介绍

一、引言 在当今云计算的时代&#xff0c;亚马逊网络服务&#xff08;AWS&#xff09;已成为业界领先的云服务提供商。其中&#xff0c;LightSail服务是AWS为简化云计算的入门和使用而推出的一项服务。它特别适合那些想要快速搭建网站、开发环境或小型应用的用户。通过LightSa…