图神经网络与图表示学习: 从基础概念到前沿技术

目录

  • 前言
  • 1 图的形式化定义和类型
    • 1.1 图的形式化定义
    • 1.2 图的类型
  • 2 图表示学习
    • 2.1 DeepWalk: 融合语义相似性与图结构
    • 2.2 Node2Vec: 灵活调整随机游走策略
    • 2.3 LINE: 一阶与二阶邻接建模
    • 2.4 NetMF: 矩阵分解的可扩展图表示学习
    • 2.5 Metapath2Vec: 异构图的全面捕捉
  • 3 图神经网络系列
    • 3.1 基本组成和分类
    • 3.2 典型模型
  • 4 图神经网络预训练
    • 4.1 基于生成模型的预训练
    • 4.2 基于对比学习的预训练
    • 4.3 具体模型
  • 结语

前言

随着复杂网络数据的快速增长,图数据的处理和分析成为机器学习领域的一个重要方向。图神经网络(Graph Neural Networks, GNNs)和图表示学习技术逐渐崭露头角,成为处理图数据的有效工具。本文将深入探讨图的形式化定义、图表示学习的基本概念以及一系列先进的图神经网络模型。

1 图的形式化定义和类型

1.1 图的形式化定义

图(Graph)是一种抽象数据结构,由节点和边构成。节点表示图中的元素,边表示节点之间的关系。图的形式化定义可以表示为:
G = ( V , E ) G=(V,E) G=(V,E)
其中, V V V是节点的集合, E E E是边的集合。节点和边的具体性质可以根据应用场景的需求而定。

1.2 图的类型

根据边的方向和节点之间的关系,图可以分为不同类型。

有向图(Directed Graph

有向图中,边是有方向的,从一个节点指向另一个节点。形式化表示为:
G = ( V , E , ρ ) G=(V,E,ρ) G=(V,E,ρ)

其中,$ρ:E→V×V $是边到节点的映射,表示每条边连接一个起始节点和一个目标节点。

无向图(Undirected Graph

在无向图中,边是无方向的,即从一个节点到另一个节点没有箭头。形式化表示为:
G = ( V , E , δ ) G=(V,E,δ) G=(V,E,δ)

其中, δ : E → { { u , v } ∣ u , v ∈ V } δ:E→\{\{u,v\}∣u,v∈V\} δ:E{{u,v}u,vV} 是边到节点对的映射,表示每条边连接两个节点。

循环图和无环图

根据图中是否存在环路,图可以进一步分为循环图和无环图。

循环图:包含至少一个环路的图。
无环图:不包含任何环路的图。

这些基本概念为我们理解图的特性以及后续的图表示学习提供了基础。

图的形式化定义和类型为我们提供了处理复杂关系数据的工具,为后续深入研究图表示学习奠定了理论基础。通过对节点和边的组合,我们能够更好地理解和描述真实世界中的复杂关系网络。

2 图表示学习

图表示学习旨在利用表示学习技术,将图映射到向量空间,以保留图的结构特征和语义特征。其中,基于随机游走的邻居序列是一种常见的方法,包括DeepWalk、LINE、Node2Vec、NetMF以及Metapath2Vec。这些方法通过模拟节点间的随机游走来捕捉相似性结构上下文,为图的向量化表示奠定了基础。

2.1 DeepWalk: 融合语义相似性与图结构

在这里插入图片描述

DeepWalk将自然语言处理中相似上下文的词具有相似语义的思想引入图领域。在图中,DeepWalk通过随机游走采样邻居节点序列,并运用Word2Vec等算法进行学习,使得相似结构上下文的节点能够在向量空间中保持相似性。这为图节点的向量表示提供了有效手段,通过模拟节点的随机游走,DeepWalk捕捉了图的语义特征与结构特征的融合。

2.2 Node2Vec: 灵活调整随机游走策略

Node2Vec更进一步,灵活地结合了内容相似性和结构相似性的考虑。通过调整随机游走的策略,包括广度优先搜索(BFS)和深度优先搜索(DFS),Node2Vec能够捕捉不同层次的邻居节点信息,为节点表示学习提供更具区分度的向量表示。这使得Node2Vec在不同的图结构中能够更好地适应,并提高了节点表示的表达能力。

2.3 LINE: 一阶与二阶邻接建模

在这里插入图片描述

LINE(Large-scale Information Network Embedding)通过一阶近似和二阶近似的建模更细致地表达邻接节点的信息。该方法旨在保留节点邻居的全局结构特征,通过在向量空间中捕捉一阶和二阶邻接关系,使得节点向量更好地捕捉图的拓扑结构。LINE的特点在于其对全局结构的敏感性,从而提高了对图形状的理解和表示的准确性。

2.4 NetMF: 矩阵分解的可扩展图表示学习

NetMF采用基于矩阵分解的图表示学习框架,通过考虑节点之间的邻接关系将图数据映射到低维向量空间。这种方法在保留全局结构信息的同时,具有较好的可扩展性,适用于大规模图数据。NetMF的矩阵分解思想使得图的向量化表示更加高效,为处理大型图数据提供了有效的解决方案。

2.5 Metapath2Vec: 异构图的全面捕捉

Metapath2Vec专注于处理异构图,结合了图结构和语义信息。通过在异构上下文中进行元路径(metapath)的随机游走,该方法更全面地捕捉了图的复杂结构,使得异构图中不同类型节点的关系得以有效表示。Metapath2Vec的方法为异构图领域提供了一种全面且有效的图表示学习策略。

这一系列基于随机游走的邻居序列方法为图表示学习提供了多样而灵活的工具,能够有效地捕捉图的结构和语义特征,为后续的图神经网络模型提供了有力的基础。

3 图神经网络系列

图神经网络是图表示学习的重要分支,涵盖了丰富的模型和技术。
在这里插入图片描述

3.1 基本组成和分类

图神经网络通常包括信息传播模块、聚合器、迭代器以及输出模块,以半监督方式实现图的表示学习。

图神经网络的分类主要分为transductive setting和inductive setting两种。区别在于预测的样本是否在训练中见过,这为不同场景下的应用提供了更多灵活性。

3.2 典型模型

  • 图卷积神经网络(GCN):通过邻居节点的信息聚合实现图的卷积操作,有效捕捉节点的全局结构信息。
  • 图变分自编码器(VGAE):通过引入随机变量,对图的结构进行潜在表示学习。
  • 图注意力网络(GAT):通过引入注意力机制,允许节点对不同邻居节点赋予不同的权重,提升模型对复杂图结构的表达能力。
  • GraphSAGE:对邻居节点进行随机采样,从而降低计算复杂度,同时保留图的局部信息。
  • GTN(Graph Transformer Network):专注于处理知识图谱中的异构图,结合图的层次化结构进行信息建模。

4 图神经网络预训练

预训练技术是图神经网络研究中的一个热门方向,通过预训练可以提高模型的泛化能力和学习效果。

4.1 基于生成模型的预训练

基于生成模型的预训练是一种通过模拟图数据的生成过程来提高模型对图结构理解的策略。这种方法的核心思想是通过生成模型学习图的概率分布,从而能够更好地捕捉图的全局结构和节点之间的关系。这为模型在后续任务中更准确地表达图数据奠定了基础。

4.2 基于对比学习的预训练

基于对比学习的预训练方法通过构造正负例进行对比学习,使得模型能够更好地学习图中节点之间的关系。通过比较节点与其邻居节点、上下文节点之间的相似性,模型能够更全面地捕捉图的局部结构和全局特征。这为模型提供了更具判别力的表示,有助于提高模型的泛化能力。

4.3 具体模型

GPT-GNN

GPT-GNN是一种将预训练任务和下游任务结合的图神经网络模型。通过使用GPT(Generative Pre-trained Transformer)作为预训练模型,GPT-GNN能够在图数据上进行预训练,捕捉图的全局特征和节点关系。这样的预训练任务提高了模型的表达能力,并使其更适用于各种图相关的任务。

GCC(Graph Contrastive Coding)
在这里插入图片描述

GCC采用对比学习的思想,从无标注输入图数据中构造正负例进行对比学习。通过将节点与其邻居节点之间的关系进行对比,GCC能够优化图表示的质量,提高了模型对图结构的理解。这一方法尤其适用于大规模图数据,为图表示学习提供了一种有效的优化路径。

这些基于预训练的方法使得图神经网络更具泛化能力,能够在未标注的大规模图数据上进行学习,并在各种下游任务中取得更好的性能。这也为图神经网络在实际应用中的广泛推广提供了有力的支持。

结语

图神经网络和图表示学习技术正在成为处理复杂图数据的重要工具。从基础的图的形式化定义到前沿的图神经网络模型,我们深入探讨了图表示学习的关键概念和方法。未来,随着研究的不断深入,图神经网络将在社交网络分析、推荐系统、生物信息学等领域发挥更为广泛的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677244.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【正式】今年第一篇CSDN(纯技术教学)

一、文件上传简介 文件上传漏洞是指用户上传了一个可执行的脚本文件(木马、病毒、恶意脚本、webshell等),并通过此脚本文件获得了执行服务器端命令的能力。上传点一般出现在头像、导入数据、上传压缩包等地方,由于程序对用户上传…

TOP100 二叉树(三)

11.114. 二叉树展开为链表 给你二叉树的根结点 root ,请你将它展开为一个单链表: 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。展开后的单链表应该与二叉树 先序遍历 顺…

SegmentAnything官网demo使用vue+python实现

一、效果&准备工作 1.效果 没啥好说的,低质量复刻SAM官网 https://segment-anything.com/ 需要提一点:所有生成embedding和mask的操作都是python后端做的,计算mask不是onnxruntime-web实现的,前端只负责了把rle编码的mask解…

5G技术对物联网的影响

随着数字化转型的加速,5G技术作为通信领域的一次重大革新,正在对物联网(IoT)产生深远的影响。对于刚入行的朋友们来说,理解5G技术及其对物联网应用的意义,是把握行业发展趋势的关键。 让我们简单了解什么是…

巧用liteflow,告别if else,SpringBoot整合liteflow

假设有一个三个原子业务&#xff0c;吃饭、喝水、刷牙。 现在有三个场景&#xff0c;分别是 场景A: 吃饭->刷牙->喝水 官网地址&#xff1a;https://liteflow.cc/ 1.添加依赖&#xff1a; <dependency><groupId>com.yomahub</groupId><artifactI…

基于鲲鹏服务NodeJs安装

准备工作 查看当前环境 uname -a查看鲲鹏云CPU架构 cat /proc/cpuinfo# 查看CPU architecture项&#xff0c;8表示v8&#xff0c;7表示v7下载Node.js NodeJs 选择 Linux Binaries (ARM) ARMv8 wget -c https://nodejs.org/dist/v12.18.3/node-v12.18.3-linux-arm64.tar.xz…

基于完全二叉树实现线段树-- [爆竹声中一岁除,线段树下苦踌躇]

文章目录 一.完全二叉树完全二叉树的父子结点引索关系 二.线段树三.基于完全二叉树实现线段树关于线段树的结点数量问题的证明递归建树递归查询区间和递归单点修改线段树模板题 一.完全二叉树 完全二叉树的物理结构是线性表,逻辑结构是二叉树 完全二叉树的父子结点引索关系 …

OpenCV与机器学习:使用opencv和sklearn实现线性回归

前言 线性回归是一种统计分析方法&#xff0c;用于确定两种或两种以上变量之间相互依赖的定量关系。在统计学中&#xff0c;线性回归利用线性回归方程&#xff08;最小二乘函数&#xff09;对一个或多个自变量&#xff08;特征值&#xff09;和因变量&#xff08;目标值&#…

深度优先搜索(DFS)与广度优先搜索(BFS):探索图与树的算法

一、引言 在图论和树形结构中&#xff0c;搜索算法是寻找从起点到终点的路径的关键。其中&#xff0c;深度优先搜索&#xff08;DFS&#xff09;和广度优先搜索&#xff08;BFS&#xff09;是最常用且最基础的两种搜索算法。本文将详细介绍广度优先搜索&#xff08;BFS&#xf…

一文彻底搞懂Kafka如何保证消息不丢失

文章目录 1. kafka 架构2. producer端是如何保证数据不丢失的2.1 同步发送2.2 异步发送2.3 批量发送 3. consumer端是如何保证数据不丢失的3.1 手动提交3.2 幂等性消费 4. broker端是如何保证数据不丢失的4.1 副本机制4.2 ISR机制4.3 刷盘机制 1. kafka 架构 Producer&#xff…

ES6 ~ ES11 学习笔记

课程地址 ES6 let let 不能重复声明变量&#xff08;var 可以&#xff09; let a; let b, c, d; let e 100; let f 521, g "atguigu", h [];let 具有块级作用域&#xff0c;内层变量外层无法访问 let 不存在变量提升&#xff08;运行前收集变量和函数&#…

基于SpringBoot+Vue的服装销售商城系统

末尾获取源码作者介绍&#xff1a;大家好&#xff0c;我是墨韵&#xff0c;本人4年开发经验&#xff0c;专注定制项目开发 更多项目&#xff1a;CSDN主页YAML墨韵 学如逆水行舟&#xff0c;不进则退。学习如赶路&#xff0c;不能慢一步。 目录 一、项目简介 二、开发技术与环…

电脑数据误删如何恢复?9 个Windows 数据恢复方案

无论您是由于软件或硬件故障、网络犯罪还是意外删除而丢失数据&#xff0c;数据丢失都会带来压力和令人不快。 如今的企业通常将其重要数据存储在云或硬盘上。但在执行其中任何一项操作之前&#xff0c;您很有可能会丢失数据。 数据丢失的主要原因是意外删除&#xff0c;任何…

springBoot,springSecurity返回乱码

框架&#xff1a;SpringBoot3 问题&#xff1a;响应内容乱码 问题代码&#xff1a; // 成功登录响应的内容Overridepublic void onAuthenticationSuccess(HttpServletRequest request, HttpServletResponse response, Authentication authentication…

【EEG信号处理】对信号进行模拟生成

生成信号的目的还是主要是为了学习和探究后面的分析方法&#xff1b;本文主要是对方法进行整理 瞬态 transient 瞬态信号是指的是一瞬间信号上去了&#xff0c;这种情况我们可以用在时域上高斯模拟 peaktime 1; % seconds width .12; ampl 9; gaus ampl * exp( -(EEG.tim…

滑块验证码识别代码分享

平时我们开发爬虫会遇到各种各样的滑动验证码&#xff0c;如下图所示&#xff1a; 为了解决这个问题&#xff0c;我写了一个通用的滑块验证码识别代码&#xff0c;主要是分析图片&#xff0c;然后计算出滑块滑动的像素距离。但是像素距离大多数情况下都不会等于滑动距离&#x…

知到答案在哪搜? #微信#笔记#其他

学习工具是我们的得力助手&#xff0c;帮助我们更好地组织学习内容和时间。 1.试题猪 这是一个公众号 总体来说还是很不错的&#xff0c;题库虽然不是特别全&#xff0c;但是大部分网课答案能够查询到&#xff0c;最重要的是免费的 下方附上一些测试的试题及答案 1、实验室…

每日五道java面试题之java基础篇(四)

第一题. 访问修饰符 public、private、protected、以及不写&#xff08;默认&#xff09;时的区别&#xff1f; Java 中&#xff0c;可以使⽤访问控制符来保护对类、变量、⽅法和构造⽅法的访问。Java ⽀持 4 种不同的访问权限。 default (即默认&#xff0c;什么也不写&…

[职场] 职场上该如何和同事相处呢?七种方法教你和同事友好相处 #其他#媒体

职场上该如何和同事相处呢&#xff1f;七种方法教你和同事友好相处 在职场上&#xff0c;如何和同事相处是一堂必修课。同事&#xff0c;是我们天天必须看到的人&#xff0c;只有和同事友好相处&#xff0c;我们才能生活得更好&#xff0c;工作得更好。那么&#xff0c;我们在…

代码随想录算法训练营day15||二叉树part02、102.二叉树的层序遍历、 226.翻转二叉树(优先掌握递归)、101. 对称二叉树 (优先掌握递归)

102.二叉树的层序遍历 题目&#xff1a;给你一个二叉树&#xff0c;请你返回其按 层序遍历 得到的节点值。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 接下来我们再来介绍二叉树的另一种遍历方式&#xff1a;层序遍历。 层序遍历一个二叉树。就是…