一、各种熵的计算
entropy_utils.py
import numpy as np # 数值计算
import math # 标量数据的计算class EntropyUtils:"""决策树中各种熵的计算,包括信息熵、信息增益、信息增益率、基尼指数。统一要求:按照信息增益最大、信息增益率最大、基尼指数增益最大"""@staticmethoddef _set_sample_weight(sample_weight, n_samples):"""扩展到集成学习,此处为样本权重的设置:param sample_weight: 各样本的权重:param n_samples: 样本量:return:"""if sample_weight is None:sample_weight = np.asarray([1.0] * n_samples)return sample_weightdef cal_info_entropy(self, y_labels, sample_weight=None):"""计算样本的信息熵:param y_labels: 递归样本子集中类别集合或特征取值:param sample_weight: 各样本的权重:return:"""y = np.asarray(y_labels)sample_weight = self._set_sample_weight(sample_weight, len(y))y_values = np.unique(y) # 样本中不同类别值ent_y = 0.0for val in y_values:p_i = len(y[y == val]) * np.mean(sample_weight[y == val]) / len(y)ent_y += -p_i * math.log2(p_i)return ent_ydef conditional_entropy(self, feature_x, y_labels, sample_weight=None):"""计算条件熵,给定特征属性的情况下,信息熵的计算:param feature_x: 某个样本特征:param y_labels: 递归样本子集中的类别集合:param sample_weight: 各样本的权重:return:"""x, y = np.asarray(feature_x), np.asarray(y_labels)sample_weight = self._set_sample_weight(sample_weight, len(y))cond_ent = 0.0for x_val in np.unique(x):x_idx = np.where(x == x_val) # 某个特征取值的样本索引集合sub_x, sub_y = x[x_idx], y[x_idx]sub_sample_weight = sample_weight[x_idx]p_k = len(sub_y) / len(y)cond_ent += p_k * self.cal_info_entropy(sub_y, sub_sample_weight)return cond_entdef info_gain(self, feature_x, y_labels, sample_weight=None):"""计算信息增益:param feature_x::param y_labels::param sample_weight::return:"""return self.cal_info_entropy(y_labels, sample_weight) - \self.conditional_entropy(feature_x, y_labels, sample_weight)def info_gain_rate(self, feature_x, y_labels, sample_weight=None):"""计算信息增益率:param feature_x::param y_labels::param sample_weight::return:"""return self.info_gain(feature_x, y_labels, sample_weight) / \self.cal_info_entropy(feature_x, sample_weight)def cal_gini(self, y_label, sample_weight=None):"""计算当前特征或类别集合的基尼值:param y_label: 递归样本子集中类别集合或特征取值:param sample_weight::return:"""y = np.asarray(y_label)sample_weight = self._set_sample_weight(sample_weight, len(y))y_values = np.unique(y)gini_val = 1.0for val in y_values:p_k = len(y[y == val]) * np.mean(sample_weight[y == val]) / len(y)gini_val -= p_k ** 2return gini_valdef conditional_gini(self, feature_x, y_labels, sample_weight=None):"""计算条件基尼指数:param feature_x::param y_labels::param sample_weight::return:"""x, y = np.asarray(feature_x), np.asarray(y_labels)sample_weight = self._set_sample_weight(sample_weight, len(y))cond_gini = 0.0for x_val in np.unique(x):x_idx = np.where(x == x_val) # 某个特征取值的样本索引集合sub_x, sub_y = x[x_idx], y[x_idx]sub_sample_weight = sample_weight[x_idx]p_k = len(sub_y) / len(y)cond_gini += p_k * self.cal_gini(sub_y, sub_sample_weight)return cond_ginidef gini_gain(self, feature_x, y_labels, sample_weight=None):"""计算基尼指数增益:param feature_x::param y_labels::param sample_weight::return:"""return self.cal_gini(y_labels, sample_weight) - \self.conditional_gini(feature_x, y_labels, sample_weight)# if __name__ == '__main__':
# y = np.random.randint(0, 2, 50)
# entropy = EntropyUtils()
# ent = entropy.cal_info_entropy(y)
# print(ent)
二、连续特征数据的离散分箱
data_bin_wrapper.py
import numpy as npclass DataBinsWrapper:"""连续特征数据的离散化,分箱(分段)操作,根据用户传参max_bins,计算分位数,以分位数分箱(分段)然后根据样本特征取值所在区间段(哪个箱)位置索引标记当前值1. fit(x)根据样本进行分箱2. transform(x)根据已存在的箱,把数据分成max_bins类"""def __init__(self, max_bins=10):self.max_bins = max_bins # 分箱数:10%,20%,...,90%self.XrangeMap = None # 箱(区间段)def fit(self, x_samples):"""根据样本进行分箱:param x_samples: 样本(二维数组 n * k),或一个特征属性的数据(二维 n * 1):return:"""if x_samples.ndim == 1: # 一个特征属性,转换为二维数组n_features = 1x_samples = x_samples[:, np.newaxis] # 添加一个轴,转换为二维数组else:n_features = x_samples.shape[1]# 构建分箱,区间段self.XrangeMap = [[] for _ in range(n_features)]for idx in range(n_features):x_sorted = sorted(x_samples[:, idx]) # 按特征索引取值,并从小到大排序for bin in range(1, self.max_bins):p = (bin / self.max_bins) * 100 // 1p_val = np.percentile(x_sorted, p)self.XrangeMap[idx].append(p_val)self.XrangeMap[idx] = sorted(list(set(self.XrangeMap[idx])))def transform(self, x_samples, XrangeMap=None):"""根据已存在的箱,把数据分成max_bins类:param x_samples: 样本(二维数组 n * k),或一个特征属性的数据(二维 n * 1):return:"""if x_samples.ndim == 1:if XrangeMap is not None:return np.asarray(np.digitize(x_samples, XrangeMap[0])).reshape(-1)else:return np.asarray(np.digitize(x_samples, self.XrangeMap[0])).reshape(-1)else:return np.asarray([np.digitize(x_samples[:, i], self.XrangeMap[i])for i in range(x_samples.shape[1])]).T# if __name__ == '__main__':
# x = np.random.randn(10, 5)
# print(x)
# dbw = DataBinsWrapper(max_bins=5)
# dbw.fit(x)
# print(dbw.XrangeMap)
# print(dbw.transform(x))
三、可视化分类边界函数
plt_decision_funtion.py
import matplotlib.pylab as plt
import numpy as npdef plot_decision_function(X, y, clf, acc=None, title_info=None, is_show=True, support_vectors=None):"""可视化分类边界函数:param X, y: 测试样本与类别:param clf: 分类模型:param acc: 模型分类正确率:param title_info: 可视化标题title的额外信息:param is_show: 是否在当前显示图像,用于父函数绘制子图:param support_vectors: 扩展支持向量机:return:"""if is_show:plt.figure(figsize=(7, 5))# 根据特征变量的最小值和最大值,生成二维网络,用于绘制等值线x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xi, yi = np.meshgrid(np.arange(x_min, x_max, 0.02),np.arange(y_min, y_max, 0.02))y_pred = clf.predict(np.c_[xi.ravel(), yi.ravel()]) # 模型预测值y_pred = y_pred.reshape(xi.shape)plt.contourf(xi, yi, y_pred, alpha=0.4)plt.scatter(X[:, 0], X[:, 1], alpha=0.8, c=y, edgecolors="k")plt.xlabel("Feature 1", fontdict={"fontsize": 12})plt.ylabel("Feature 2", fontdict={"fontsize": 12})if acc:if title_info:plt.title("Model Classification Boundary %s \n(accuracy = %.5f)"% (title_info, acc), fontdict={"fontsize": 14})else:plt.title("Model Classification Boundary (accuracy = %.5f)"% acc, fontdict={"fontsize": 14})else:if title_info:plt.title("Model Classification Boundary %s"% title_info, fontdict={"fontsize": 14})else:plt.title("Model Classification Boundary", fontdict={"fontsize": 14})if support_vectors is not None: # 可视化支持向量,针对SVMplt.scatter(X[support_vectors, 0], X[support_vectors, 1],s=50, c="None", alpha=0.7, edgecolors="red")if is_show:plt.show()
四、熵计算的测试
test_entropy.py
import numpy as np
import pandas as pd
from utils.entropy_utils import EntropyUtils
from utils.data_bin_wrapper import DataBinsWrapperdata = pd.read_csv("data/watermelon.csv").iloc[:, 1:]
feat_names = data.columns[:6]
y = data.iloc[:, -1]
ent_obj = EntropyUtils()print("各特征的信息增益如下:")
for feat in feat_names:print(feat, ":", ent_obj.info_gain(data.loc[:, feat], y))print("=" * 60)
print("各特征的信息增益率如下:")
for feat in feat_names:print(feat, ":", ent_obj.info_gain_rate(data.loc[:, feat], y))print("=" * 60)
print("各特征的基尼指数增益如下:")
for feat in feat_names:print(feat, ":", ent_obj.gini_gain(data.loc[:, feat], y))print("=" * 60)
x1 = np.asarray(data.loc[:, ["密度", "含糖率"]])
print(x1)
dbw = DataBinsWrapper(max_bins=8)
dbw.fit(x1)
print(dbw.transform(x1))
五、树的结点信息封装
tree_node.py
class TreeNode_C:"""决策树分类算法,树的结点信息封装,实体类:setXXX()、getXXX()"""def __init__(self, feature_idx: int = None, feature_val=None, criterion_val: float = None,n_samples: int = None, target_dist: dict = None, weight_dist: dict = None,left_child_Node=None, right_child_Node=None):"""决策树结点信息封装:param feature_idx: 特征索引,如果指定特征属性的名称,可以按照索引取值:param feature_val: 特征取值:param criterion_val: 划分结点的标准:信息增益(率)、基尼指数增益:param n_samples: 当前结点所包含的样本量:param target_dist: 当前结点类别分布:0-25%,1-50%,2-25%:param weight_dist: 当前结点所包含的样本权重分布:param left_child_Node: 左子树:param right_child_Node: 右子树"""self.feature_idx = feature_idxself.feature_val = feature_valself.criterion_val = criterion_valself.n_samples = n_samplesself.target_dist = target_distself.weight_dist = weight_distself.left_child_Node = left_child_Node # 递归self.right_child_Node = right_child_Node # 递归def level_order(self):"""按层次遍历树...:return:"""pass# def get_feature_idx(self):# return self.get_feature_idx()## def set_feature_idx(self, feature_idx):# self.feature_idx = feature_idx
六、分类决策树算法的实现
decision_tree_C.py
import numpy as np
from utils.entropy_utils import EntropyUtils
from utils.tree_node import TreeNode_C
from utils.data_bin_wrapper import DataBinsWrapperclass DecisionTreeClassifier:"""分类决策树算法实现:无论是ID3、C4.5或CART,统一按照二叉树构造1. 划分标准:信息增益(率)、基尼指数增益,都按照最大值选择特征属性2. 创建决策树fit(),递归算法实现,注意出口条件3. 预测predict_proba()、predict() --> 对树的搜索4. 数据的预处理操作,尤其是连续数据的离散化,分箱5. 剪枝处理"""def __init__(self, criterion="CART", is_feature_all_R=False, dbw_feature_idx=None,max_depth=None, min_sample_split=2, min_sample_leaf=1,min_impurity_decrease=0, max_bins=10):self.utils = EntropyUtils() # 结点划分类self.criterion = criterion # 结点的划分标准if criterion.lower() == "cart":self.criterion_func = self.utils.gini_gain # 基尼指数增益elif criterion.lower() == "c45":self.criterion_func = self.utils.info_gain_rate # 信息增益率elif criterion.lower() == "id3":self.criterion_func = self.utils.info_gain # 信息增益else:raise ValueError("参数criterion仅限cart、c45或id3...")self.is_feature_all_R = is_feature_all_R # 所有样本特征是否全是连续数据self.dbw_feature_idx = dbw_feature_idx # 混合类型数据,可指定连续特征属性的索引self.max_depth = max_depth # 树的最大深度,不传参,则一直划分下去self.min_sample_split = min_sample_split # 最小的划分结点的样本量,小于则不划分self.min_sample_leaf = min_sample_leaf # 叶子结点所包含的最小样本量,剩余的样本小于这个值,标记叶子结点self.min_impurity_decrease = min_impurity_decrease # 最小结点不纯度减少值,小于这个值,不足以划分self.max_bins = max_bins # 连续数据的分箱数,越大,则划分越细self.root_node: TreeNode_C() = None # 分类决策树的根节点self.dbw = DataBinsWrapper(max_bins=max_bins) # 连续数据离散化对象self.dbw_XrangeMap = {} # 存储训练样本连续特征分箱的端点self.class_values = None # 样本的类别取值def _data_bin_wrapper(self, x_samples):"""针对特定的连续特征属性索引dbw_feature_idx,分别进行分箱,考虑测试样本与训练样本使用同一个XrangeMap:param x_samples: 样本:即可以是训练样本,也可以是测试样本:return:"""self.dbw_feature_idx = np.asarray(self.dbw_feature_idx)x_samples_prop = [] # 分箱之后的数据if not self.dbw_XrangeMap:# 为空,即创建决策树前所做的分箱操作for i in range(x_samples.shape[1]):if i in self.dbw_feature_idx: # 说明当前特征是连续数值self.dbw.fit(x_samples[:, i])self.dbw_XrangeMap[i] = self.dbw.XrangeMapx_samples_prop.append(self.dbw.transform(x_samples[:, i]))else:x_samples_prop.append(x_samples[:, i])else: # 针对测试样本的分箱操作for i in range(x_samples.shape[1]):if i in self.dbw_feature_idx: # 说明当前特征是连续数值x_samples_prop.append(self.dbw.transform(x_samples[:, i], self.dbw_XrangeMap[i]))else:x_samples_prop.append(x_samples[:, i])return np.asarray(x_samples_prop).Tdef fit(self, x_train, y_train, sample_weight=None):"""决策树的创建,递归操作前的必要信息处理:param x_train: 训练样本:ndarray,n * k:param y_train: 目标集:ndarray,(n, ):param sample_weight: 各样本的权重,(n, ):return:"""x_train, y_train = np.asarray(x_train), np.asarray(y_train)self.class_values = np.unique(y_train) # 样本的类别取值n_samples, n_features = x_train.shape # 训练样本的样本量和特征属性数目if sample_weight is None:sample_weight = np.asarray([1.0] * n_samples)self.root_node = TreeNode_C() # 创建一个空树if self.is_feature_all_R: # 全部是连续数据self.dbw.fit(x_train)x_train = self.dbw.transform(x_train)elif self.dbw_feature_idx:x_train = self._data_bin_wrapper(x_train)self._build_tree(1, self.root_node, x_train, y_train, sample_weight)# print(x_train)def _build_tree(self, cur_depth, cur_node: TreeNode_C, x_train, y_train, sample_weight):"""递归创建决策树算法,核心算法。按先序(中序、后序)创建的:param cur_depth: 递归划分后的树的深度:param cur_node: 递归划分后的当前根结点:param x_train: 递归划分后的训练样本:param y_train: 递归划分后的目标集合:param sample_weight: 递归划分后的各样本权重:return:"""n_samples, n_features = x_train.shape # 当前样本子集中的样本量和特征属性数目target_dist, weight_dist = {}, {} # 当前样本类别分布和权重分布 0-->30%,1-->70%class_labels = np.unique(y_train) # 不同的类别值for label in class_labels:target_dist[label] = len(y_train[y_train == label]) / n_samplesweight_dist[label] = np.mean(sample_weight[y_train == label])cur_node.target_dist = target_distcur_node.weight_dist = weight_distcur_node.n_samples = n_samples# 递归出口判断if len(target_dist) <= 1: # 所有的样本全属于同一个类别,递归出口1# 如果为0,则表示当前样本集合为空,递归出口3returnif n_samples < self.min_sample_split: # 当前结点所包含的样本量不足以划分returnif self.max_depth is not None and cur_depth > self.max_depth: # 树的深度达到最大深度return# 划分标准,选择最佳的划分特征及其取值best_idx, best_val, best_criterion_val = None, None, 0.0for k in range(n_features): # 对当前样本集合中每个特征计算划分标准for f_val in np.unique(x_train[:, k]): # 当前特征的不同取值feat_k_values = (x_train[:, k] == f_val).astype(int) # 是当前取值f_val就是1,否则就是0criterion_val = self.criterion_func(feat_k_values, y_train, sample_weight)if criterion_val > best_criterion_val:best_criterion_val = criterion_val # 最佳的划分标准值best_idx, best_val = k, f_val # 当前最佳特征索引以及取值# 递归出口的判断if best_idx is None: # 当前属性为空,或者所有样本在所有属性上取值相同,无法划分returnif best_criterion_val <= self.min_impurity_decrease: # 小于最小不纯度阈值,不划分returncur_node.criterion_val = best_criterion_valcur_node.feature_idx = best_idxcur_node.feature_val = best_val# print("当前划分的特征索引:", best_idx, "取值:", best_val, "最佳标准值:", best_criterion_val)# print("当前结点的类别分布:", target_dist)# 创建左子树,并递归创建以当前结点为子树根节点的左子树left_idx = np.where(x_train[:, best_idx] == best_val) # 左子树所包含的样本子集索引if len(left_idx) >= self.min_sample_leaf: # 小于叶子结点所包含的最少样本量,则标记为叶子结点left_child_node = TreeNode_C() # 创建左子树空结点# 以当前结点为子树根结点,递归创建cur_node.left_child_Node = left_child_nodeself._build_tree(cur_depth + 1, left_child_node, x_train[left_idx],y_train[left_idx], sample_weight[left_idx])right_idx = np.where(x_train[:, best_idx] != best_val) # 右子树所包含的样本子集索引if len(right_idx) >= self.min_sample_leaf: # 小于叶子结点所包含的最少样本量,则标记为叶子结点right_child_node = TreeNode_C() # 创建右子树空结点# 以当前结点为子树根结点,递归创建cur_node.right_child_Node = right_child_nodeself._build_tree(cur_depth + 1, right_child_node, x_train[right_idx],y_train[right_idx], sample_weight[right_idx])def _search_tree_predict(self, cur_node: TreeNode_C, x_test):"""根据测试样本从根结点到叶子结点搜索路径,判定类别搜索:按照后续遍历:param x_test: 单个测试样本:return:"""if cur_node.left_child_Node and x_test[cur_node.feature_idx] == cur_node.feature_val:return self._search_tree_predict(cur_node.left_child_Node, x_test)elif cur_node.right_child_Node and x_test[cur_node.feature_idx] != cur_node.feature_val:return self._search_tree_predict(cur_node.right_child_Node, x_test)else:# 叶子结点,类别,包含有类别分布# print(cur_node.target_dist)class_p = np.zeros(len(self.class_values)) # 测试样本的类别概率for i, c in enumerate(self.class_values):class_p[i] = cur_node.target_dist.get(c, 0) * cur_node.weight_dist.get(c, 1.0)class_p / np.sum(class_p) # 归一化return class_pdef predict_proba(self, x_test):"""预测测试样本x_test的类别概率:param x_test: 测试样本ndarray、numpy数值运算:return:"""x_test = np.asarray(x_test) # 避免传递DataFrame、list...if self.is_feature_all_R:if self.dbw.XrangeMap is not None:x_test = self.dbw.transform(x_test)else:raise ValueError("请先创建决策树...")elif self.dbw_feature_idx is not None:x_test = self._data_bin_wrapper(x_test)prob_dist = [] # 用于存储测试样本的类别概率分布for i in range(x_test.shape[0]):prob_dist.append(self._search_tree_predict(self.root_node, x_test[i]))return np.asarray(prob_dist)def predict(self, x_test):"""预测测试样本的类别:param x_test: 测试样本:return:"""x_test = np.asarray(x_test) # 避免传递DataFrame、list...return np.argmax(self.predict_proba(x_test), axis=1)def _prune_node(self, cur_node: TreeNode_C, alpha):"""递归剪枝,针对决策树中的内部结点,自底向上,逐个考察方法:后序遍历:param cur_node: 当前递归的决策树的内部结点:param alpha: 剪枝阈值:return:"""# 若左子树存在,递归左子树进行剪枝if cur_node.left_child_Node:self._prune_node(cur_node.left_child_Node, alpha)# 若右子树存在,递归右子树进行剪枝if cur_node.right_child_Node:self._prune_node(cur_node.right_child_Node, alpha)# 针对决策树的内部结点剪枝,非叶结点if cur_node.left_child_Node is not None or cur_node.right_child_Node is not None:for child_node in [cur_node.left_child_Node, cur_node.right_child_Node]:if child_node is None:# 可能存在左右子树之一为空的情况,当左右子树划分的样本子集数小于min_samples_leafcontinueif child_node.left_child_Node is not None or child_node.right_child_Node is not None:return# 计算剪枝前的损失值,2表示当前结点包含两个叶子结点pre_prune_value = 2 * alphafor child_node in [cur_node.left_child_Node, cur_node.right_child_Node]:# 计算左右叶子结点的经验熵 if child_node is None:# 可能存在左右子树之一为空的情况,当左右子树划分的样本子集数小于min_samples_leafcontinuefor key, value in child_node.target_dist.items(): # 对每个叶子结点的类别分布pre_prune_value += -1 * child_node.n_samples * value * np.log(value) * \child_node.weight_dist.get(key, 1.0)# 计算剪枝后的损失值,当前结点即是叶子结点after_prune_value = alphafor key, value in cur_node.target_dist.items(): # 当前待剪枝的结点的类别分布after_prune_value += -1 * cur_node.n_samples * value * np.log(value) * \cur_node.weight_dist.get(key, 1.0)if after_prune_value <= pre_prune_value: # 进行剪枝操作cur_node.left_child_Node = Nonecur_node.right_child_Node = Nonecur_node.feature_idx, cur_node.feature_val = None, Nonedef prune(self, alpha=0.01):"""决策树后剪枝算法(李航)C(T) + alpha * |T|:param alpha: 剪枝阈值,权衡模型对训练数据的拟合程度与模型的复杂度:return:"""self._prune_node(self.root_node, alpha)return self.root_node
七、分类决策树算法的测试
test_decision_tree_C.py
import pandas as pd
from decision_tree_C import DecisionTreeClassifier
from sklearn.datasets import load_iris, load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder# data = pd.read_csv("data/watermelon.csv").iloc[:, 1:]
# X = data.iloc[:, :-1]
# y = data.iloc[:, -1]# iris = load_iris()
# X, y = iris.data, iris.target# bc_data = load_breast_cancer()
# X, y = bc_data.data, bc_data.targetnursery = pd.read_csv("data/nursery.csv").dropna()
X, y = np.asarray(nursery.iloc[:, :-1]), np.asarray(nursery.iloc[:, -1])y = LabelEncoder().fit_transform(y)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y)depth = np.linspace(2, 12, 11, dtype=np.int64)
accuracy = []for d in depth:dtc = DecisionTreeClassifier(is_feature_all_R=False, max_depth=d)dtc.fit(X_train, y_train)y_pred_labels = dtc.predict(X_test)acc = accuracy_score(y_test, y_pred_labels)# print(acc)accuracy.append(acc)
# dtc = DecisionTreeClassifier(dbw_feature_idx=[6, 7], max_bins=8, max_depth=2)
# dtc.fit(X, y)
# y_pred_prob = dtc.predict_proba(X)
# print(y_pred_prob)# print(classification_report(y_test, y_pred_labels))plt.figure(figsize=(7, 5))
plt.plot(depth, accuracy, "ko-", lw=1)
plt.show()
test_decision_tree_C_2.py
import numpy as np
import matplotlib.pyplot as plt
from decision_tree_C import DecisionTreeClassifier
from sklearn.datasets import make_classification
from sklearn.metrics import classification_report, accuracy_score
from utils.plt_decision_function import plot_decision_function# 生成数据
data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,n_clusters_per_class=1, class_sep=0.8, random_state=21)
# print(data)
# print(target)cart_tree = DecisionTreeClassifier(is_feature_all_R=True)
cart_tree.fit(data, target)
y_test_pred = cart_tree.predict(data)
print(classification_report(target, y_test_pred))
plt.figure(figsize=(14, 10))
plt.subplot(221)
acc = accuracy_score(target, y_test_pred)
plot_decision_function(data, target, cart_tree, acc=acc, is_show=False, title_info="By CART UnPrune")# 剪枝处理
alpha = [1, 3, 5]
for i in range(3):cart_tree.prune(alpha=alpha[i])y_test_pred = cart_tree.predict(data)acc = accuracy_score(target, y_test_pred)plt.subplot(222 + i)plot_decision_function(data, target, cart_tree, acc=acc, is_show=False,title_info="By CART Prune α = %.1f" % alpha[i])
plt.tight_layout()
plt.show()
test_decision_tree_C_3.py
import copyimport numpy as np
import matplotlib.pyplot as plt
from decision_tree_C import DecisionTreeClassifier
from sklearn.datasets import load_breast_cancer, load_iris
from sklearn.metrics import classification_report, accuracy_score
from utils.plt_decision_function import plot_decision_function
from sklearn.model_selection import StratifiedKFoldbc_data = load_breast_cancer()
X, y = bc_data.data, bc_data.target
alphas = np.linspace(0, 10, 30)
accuracy_scores = [] # 存储每个alpha阈值下的交叉验证均分
cart = DecisionTreeClassifier(criterion="cart", is_feature_all_R=True, max_bins=10)
for alpha in alphas:scores = []k_fold = StratifiedKFold(n_splits=10).split(X, y)for train_idx, test_idx in k_fold:tree = copy.deepcopy(cart)tree.fit(X[train_idx], y[train_idx])tree.prune(alpha=alpha)y_test_pred = tree.predict(X[test_idx])scores.append(accuracy_score(y[test_idx], y_test_pred))del treeprint(alpha, ":", np.mean(scores))accuracy_scores.append(np.mean(scores))plt.figure(figsize=(7, 5))
plt.plot(alphas, accuracy_scores, "ko-", lw=1)
plt.grid(ls=":")
plt.xlabel("Alpha", fontdict={"fontsize": 12})
plt.ylabel("Accuracy Scores", fontdict={"fontsize": 12})
plt.title("Cross Validation Scores under different Prune Alpha", fontdict={"fontsize": 14})
plt.show()