8天长假快来了,Python分析【去哪儿旅游攻略】数据,制作可视化图表

目录

  • 前言
      • 环境使用
      • 模块使用
      • 数据来源分析
  • 代码实现
      • 导入模块
      • 请求数据
      • 解析
      • 保存
  • 数据可视化
      • 导入模块、数据
      • 年份分布情况
      • 月份分布情况
      • 出行时间情况
      • 费用分布情况
      • 人员分布情况

前言

2023年的中秋节和国庆节即将来临,好消息是,它们将连休8天!这个长假为许多人提供了绝佳的休闲机会,让许多人都迫不及待地想要释放他们被压抑已久的旅游热情,所以很多朋友已经开始着手规划他们的旅游行程。

今天我们来分析下去哪儿的旅游攻略数据,看看吃、住、游玩在价位合适的情况下,怎样才能玩的开心

环境使用

Python 3.8
Pycharm

模块使用

requests
parsel
csv

数据来源分析

  1. 明确需求

这次选的月份为10 ~ 12月,游玩费用为1000 ~ 2999这个价位


2. 抓包分析

按F12,打开开发者工具,点击搜索,输入你想要的数据

找到数据链接

https://travel.qunar.com/travelbook/list.htm?page=1&order=hot_heat&&month=10_11_12&avgPrice=2

代码实现

导入模块

import requests
import parsel
import csv

请求数据

模拟浏览器: <可以直接复制>
response.text 获取响应文本数据
response.json() 获取响应json数据
response.content 获取响应二进制数据
我们使用requests.get()方法向指定的URL发送GET请求,并获取到响应的内容

url = f'https://travel.qunar.com/travelbook/list.htm?page=1&order=hot_heat&&month=10_11_12&&avgPrice=2'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'
}
response = requests.get(url, headers=headers)

解析

先取响应文本数据

selector = parsel.Selector(response.text)

css选择器::根据标签属性提取数据内容,看元素面板, 为了帮助找到数据标签,

lis = selector.css('.list_item')
for li in lis:title = li.css('.tit a::text').get()user_name = li.css('.user_name a::text').get()date = li.css('.date::text').get()days = li.css('.days::text').get()photo_nums = li.css('.photo_nums::text').get()fee = li.css('.fee::text').get()people = li.css('.people::text').get()trip = li.css('.trip::text').get()places = ''.join(li.css('.places ::text').getall()).split('行程')place_1 = places[0].replace('途经:', '')place_2 = places[-1].replace(':', '')href = li.css('.tit a::attr(href)').get().split('/')[-1]link = f'https://travel.qunar.com/travelbook/note/{href}'dit = {'标题': title,'昵称': user_name,'日期': date,'耗时': days,'照片': photo_nums,'费用': fee,'人员': people,'标签': trip,'途径': place_1,'行程': place_2,'详情页': link,}print(title, user_name, date, days, photo_nums, fee, people, trip, place_1, place_2, link, sep=' | ')

保存

f = open('data.csv', mode='w', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['标题','昵称','日期','耗时','照片','费用','人员','标签','途径','行程','详情页',
])
csv_writer.writeheader()

数据可视化

导入模块、数据

import pandas as pddf = pd.read_csv('data.csv')
df.head()

年份分布情况

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
num = df['年份'].value_counts().to_list()
info = df['年份'].value_counts().index.to_list()
c = (Pie().add("",[list(z)for z in zip(info,num,)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="年份分布情况"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

月份分布情况

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
num = df['月份'].value_counts().to_list()
info = df['月份'].value_counts().index.to_list()
c = (Pie().add("",[list(z)for z in zip(info,num,)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="月份分布情况"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

出行时间情况

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
num = df['耗时'].value_counts().to_list()
info = df['耗时'].value_counts().index.to_list()
c = (Pie().add("",[list(z)for z in zip(info,num,)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="出行时间情况"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

费用分布情况

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
num = df['费用'].value_counts().to_list()
info = df['费用'].value_counts().index.to_list()
c = (Pie().add("",[list(z)for z in zip(info,num,)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="费用分布情况"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

人员分布情况

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
num = df['人员'].value_counts().to_list()
info = df['人员'].value_counts().index.to_list()
c = (Pie().add("",[list(z)for z in zip(info,num,)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="人员分布情况"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()


适合练手的25个Python案例源码分享,总有一个你想要的

👇问题解答 · 源码获取 · 技术交流 · 抱团学习请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67528.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 使用

简介 Docker是一个开源的容器引擎&#xff0c;它有助于更快地交付应用。 Docker可将应用程序和基础设施层隔离&#xff0c;并且能将基础设施当作程序一样进行管理。使用 Docker可更快地打包、测试以及部署应用程序&#xff0c;并可以缩短从编写到部署运行代码的周期。 Docker…

uniapp 项目实践总结(二)从零开始搭建一个项目

导语:本篇文章主要是项目方面的技术开发总结,新建一个项目可以选择使用可视化界面,也可以使用命令行搭建。 目录 可视化界面命令行搭建安卓开发环境苹果开发环境可视化界面 安装软件 使用官方推荐的 HbuilderX 软件,开发方式比较简单,内置相关环境以及终端,无需配置 no…

【python】可视化

柱状图 matplotlib之pyplot模块之柱状图&#xff08;bar()&#xff1a;基础参数、外观参数&#xff09;_plt.bar_mighty13的博客-CSDN博客 bar()的基础参数如下&#xff1a; x&#xff1a;柱子在x轴上的坐标。浮点数或类数组结构。注意x可以为字符串数组&#xff01; height&…

Unity中Shader的UV扭曲效果的实现

文章目录 前言一、实现的思路1、在属性面板暴露一个 扭曲贴图的属性2、在片元结构体中&#xff0c;新增一个float2类型的变量&#xff0c;用于独立存储将用于扭曲的纹理的信息3、在顶点着色器中&#xff0c;根据需要使用TRANSFORM_TEX对Tilling 和 Offset 插值&#xff1b;以及…

通过cpolar内网穿透,在家实现便捷的SSH远程连接公司内网服务器教程

文章目录 1. Linux CentOS安装cpolar2. 创建TCP隧道3. 随机地址公网远程连接4. 固定TCP地址5. 使用固定公网TCP地址SSH远程 本次教程我们来实现如何在外公网环境下&#xff0c;SSH远程连接家里/公司的Linux CentOS服务器&#xff0c;无需公网IP&#xff0c;也不需要设置路由器。…

Spring Boot 整合 Shiro(后端)

1 Shiro 什么是 Shiro 官网&#xff1a; http://shiro.apache.org/ 是一款主流的 Java 安全框架&#xff0c;不依赖任何容器&#xff0c;可以运行在 Java SE 和 Java EE 项目中&#xff0c;它的主要作用是对访问系统的用户进行身份认证、 授权、会话管理、加密等操作。 …

FreeRTOS操作系统中,断言输出 Error:..\..\FreeRTOS\portable\RVDS\ARM_CM4F\port.c,766 原因

分析&#xff1a;Error:..\..\FreeRTOS\portable\RVDS\ARM_CM4F\port.c,766 出现这个原因表示&#xff0c;你现在系统某个中断的优先级高于FreeRTOS可管理的优先级范围&#xff0c;一旦你这个中断触发&#xff0c;断言的信息即你串口就会输出这个条语句&#xff08;前提你串口…

OpenCV(十九):模板匹配

1.模板匹配&#xff1a; OpenCV提供了一个模板匹配函数&#xff0c;用于在图像中寻找给定模板的匹配位置。 2.图像模板匹配函数matchTemplate void matchTemplate( InputArray image, InputArray templ, OutputArray result, int method, InputArray mask noArray() ); image…

《Python魔法大冒险》005 魔法挑战:自我介绍机器人

魔法师和小鱼坐在图书馆的一扇窗户旁&#xff0c;窗外的星空闪烁着神秘的光芒。魔法师轻轻地拍了拍小鱼的肩膀。 魔法师&#xff1a; 小鱼&#xff0c;你已经学会了编写简单的魔法程序&#xff0c;现在我要教你如何创造一个有自己思想的机器人&#xff0c;让它能够和我们一样&…

Ansible学习笔记6

stat模块&#xff1a;获取文件的状态信息&#xff0c;类似Linux的stat状态。 获取/etc/fstab文件的状态。 [rootlocalhost tmp]# ansible group1 -m stat -a "path/etc/fstab" 192.168.17.106 | SUCCESS > {"ansible_facts": {"discovered_inter…

【Java转Go】Go中使用WebSocket实现聊天室(私聊+群聊)

目录 前言功能效果&#xff08;一人分饰多角.jpg&#x1f60e;&#xff09;用户上线、群聊私聊和留言下线 实现思路代码服务端 chat.go 完整代码客户端 html 完整代码 最后 前言 之前在Java中&#xff0c;用 springbootwebsocket 实现了一个聊天室&#xff1a;springbootwebso…

算法笔记:二叉树

1 基本二叉树 二叉树是一种树形数据结构&#xff0c;其中每个节点最多有两个子节点&#xff0c;通常称为“左子节点”和“右子节点”。 二叉树的根是唯一没有父节点的节点&#xff0c;而所有其他节点都有一个父节点和零个或两个子节点。 1.1 基础术语 节点&#xff08;Node&…

Python 内置函数详解 (1) 数学运算

近期在外旅游,本篇是出发前定时发布的,不完整,旅游回来后再补充。 Python 内置函数 Python3.11共有75个内置函数,其来历和分类请参考:Python 新版本有75个内置函数,你不会不知道吧_Hann Yang的博客-CSDN博客 函数列表 abs aiter all …

基于PyTorch的交通标志目标检测系统

一、开发环境 Windows 10PyCharm 2021.3.2Python 3.7PyTorch 1.7.0 二、制作交通标志数据集&#xff0c;如下图 三、配置好数据集的地址&#xff0c;然后开始训练 python train.py --data traffic_data.yaml --cfg traffic_yolov5s.yaml --weights pretrained/yolov5s.pt --e…

【Java 基础篇】Java继承:打开面向对象编程的大门

继承是面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;中的一个重要概念。在Java中&#xff0c;继承允许一个类&#xff08;子类&#xff09;从另一个类&#xff08;父类&#xff09;继承属性和方法。这种机制使得代码重用、扩展和维护变得更…

算法笔记 近似最近邻查找(Approximate Nearest Neighbor Search,ANN)

1 介绍 精准最近邻搜索中数据维度一般较低&#xff0c;所以会采用穷举搜索&#xff0c;即在数据库中依次计算其中样本与所查询数据之间的距离&#xff0c;抽取出所计算出来的距离最小的样本即为所要查找的最近邻。 当数据量非常大的时候&#xff0c;搜索效率急剧下降。——>…

知识储备--基础算法篇-矩阵

2.矩阵 2.1第54题螺旋矩阵 第一题上来就跪了&#xff0c;看了官方答案感觉不是很好理解&#xff0c;找了一个比较容易理解的。 class Solution(object):def spiralOrder(self, matrix):""":type matrix: List[List[int]]:rtype: List[int]"""…

CG MAGIC分享3d Max中的Corona渲染器材质如何成转换VRay材质?

大家无论是使用Corona渲染器还是Vray渲染器时&#xff0c;进行材质问题时&#xff0c;都会遇到转化材质问题。 如何将CR转换成VR或者将VR转换CR材质呢&#xff1f; 对于这两者之间转换最好最好的方法只能是材质转换器。 CG MAGIC小编&#xff0c;梳理了两种方法&#xff0c;大…

【zookeeper】zookeeper日常运维

本文将分享一些zookeeper在日常使用中一些维护经验。 zookeeper清理快照 脚本或者命令清理 zookeeper长时间运行&#xff0c;快照逐渐增多可能造成服务器磁盘被占满的情况&#xff0c;但我们不能贸然用rm命令删除快照文件&#xff0c;如果直接删完会导致丢失好多数据&#x…

Vision Transformer(VIT 网络架构)

论文下载链接&#xff1a;https://arxiv.org/abs/2010.11929 文章目录 引言1. VIT与传统CNN的比较2. 为什么需要Transformer在图像任务中&#xff1f; 1. 深入Transformer1.1 Transformer的起源&#xff1a;NLP领域的突破1.2 Transformer的基本组成1.2.1 自注意机制 (Self-Atte…