机器学习——流形学习

流形学习是一种在机器学习领域中用于理解和分析数据的技术。它的核心思想是,尽管我们通常将数据表示为高维空间中的向量,但实际上数据可能具有较低维度的内在结构,这种结构被称为流形。流形学习的目标是发现并利用数据的这种潜在结构,以便更好地理解和处理数据。

一些基本概念开始:

1. 流形

流形是一种数学概念,指的是局部类似于欧几里德空间的空间。简单来说,流形可以理解为在高维空间中弯曲或扭曲的低维子空间。例如,二维球面就是三维空间中的一个流形,虽然它是三维的,但局部上看起来类似于二维平面。

2. 高维数据

在现实世界中,我们通常会面对高维数据,比如图像、文本、传感器数据等。这些数据由许多特征组成,每个特征都可以看作是数据空间中的一个维度。

3. 问题

在高维空间中进行数据分析和建模可能会面临一些挑战。例如,维度灾难会导致数据稀疏性和过拟合问题,而高维数据的可视化和理解也变得困难。

4. 流形学习的目标

流形学习的目标是通过发现数据的低维流形结构来解决这些问题。它通过将高维数据映射到一个更低维度的流形空间中,从而提供更紧凑和具有判别性的数据表示。这种表示通常更适合用于可视化、分类、聚类和其他机器学习任务。

5. 流形学习的方法

流形学习的方法通常包括以下步骤:

  • 相似度/距离计算: 首先,计算数据点之间的相似度或距离,以衡量它们之间的关系。

  • 局部近邻搜索: 对于每个数据点,找到其在高维空间中的局部近邻。

  • 流形重建: 基于局部近邻关系,通过一些数学技术(如局部线性嵌入、等度量映射等)来估计数据的低维流形结构。

  • 降维映射: 将高维数据映射到低维流形空间中,以得到更紧凑和具有判别性的表示。

6. 应用

流形学习在数据可视化、特征提取、数据压缩和降维、异常检测等领域都有广泛的应用。常见的流形学习算法包括局部线性嵌入(Locally Linear Embedding, LLE)、等度量映射(Isomap)、拉普拉斯特征映射(Laplacian Eigenmaps)、t-分布邻近嵌入(t-Distributed Stochastic Neighbor Embedding, t-SNE)等。

通过流形学习,我们可以更好地理解和处理高维数据,从而提取出数据的有效特征和结构。

更直白易懂的解释

流形学习是一种处理高维数据的方法,可以帮助我们更好地理解和分析数据。想象一下你有一堆数据点,这些点在很多维度上有信息,比如一张图片,它不仅仅有长和宽,还有颜色深浅等等,这些都是不同的维度。高维意味着数据在很多不同的方面都有变化,这使得直接观察和理解数据变得非常困难。

流形学习的核心思想是,虽然这些数据点在高维空间中分布,但实际上它们可能会沿着某种低维的结构排列。这就好比一张纸是二维的,但你可以把它卷成一个筒,或者折成各种形状,这些形状在三维空间中展开,但纸的本质仍然是二维的。流形学习就是要找到这种低维的**“本质结构”**。

为了让人更容易理解,我们可以用一个简单的比喻:想象你在一个黑暗的山洞里,手里只有一支手电筒。你的任务是弄清楚山洞的形状。手电筒照亮的部分就像是你通过观察数据获得的信息,虽然你不能一眼看到整个山洞的形状,但通过在不同位置照亮,你可以逐渐理解山洞的布局。流形学习就像是这个过程,通过从不同角度“照亮”数据,帮助我们理解数据的内在结构,即便这些数据本身是在很高的维度上分布的。

在实践中,流形学习可以帮助我们在降低数据的维度的同时,保留数据的重要特征,这样不仅可以让数据更容易被理解和分析,还可以提高数据处理的效率。

总结

简单来说,流形学习就是一种找到数据内在结构的智能方式,使得我们可以更简单地处理和理解复杂的高维数据。

补充:
微分流形
微分流形是数学中的一个概念,用于描述那些在局部看起来像欧几里得空间(即我们熟悉的二维平面或三维空间)的空间,但整体上可能有复杂的形状和结构。可以将微分流形想象成一个可以被平滑弯曲的形状,比如地球的表面。虽然地球是一个三维对象,但其表面(忽略山脉和海洋的高低起伏)可以被看作是一个二维的微分流形,因为在任何一个小的区域内,它都近似于一个平面。

李群
李群以挪威数学家索菲斯·李的名字命名,是一种特殊的群,它既是一个群(一个包含一系列元素和一个元素间组合规则的数学结构,其中每个元素都有一个逆,且组合规则满足某些基本性质,如结合律)也是一个微分流形。这意味着李群的元素可以连续地变化,并且这种变化可以用微分方程来描述。李群在物理学中非常重要,因为它们能够描述对称性,比如旋转、平移等操作。一个简单的例子是地球上的所有可能的旋转,这些旋转构成了一个李群,因为你可以连续地从一个旋转过渡到另一个旋转,并且这些旋转操作遵循群的规则。

李代数
李代数是与李群紧密相关的数学结构,它描述了李群元素的无穷小变化,可以被看作是李群结构的“切空间”(在某点的切线空间,描述在该点附近李群元素如何变化)。如果李群是通过一组连续变换描述的对称性,那么李代数则描述了这些变换开始改变时的行为。简单来说,如果你把李群想象成一个可以连续变化的对象集合,那么李代数就描述了这些变化在非常小的尺度上是如何进行的。例如,在物理学中,李代数帮助人们理解基本粒子的对称性和守恒律。

用更通俗的语言,如果说李群是描述一系列动作(如转动一个球)的规则集合,那么李代数就是描述这些动作开始如何微小变化的规则。它们是理解复杂系统变化规律的强大工具,尤其是在物理学和几何学中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/673142.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

H12-821_28

28.如图所示,在一个纯IPv6环境中,若想实现PC1与PC2之间的通信,下列哪组地址可以分别配置在PC1与P2上 A.2001:FDC:1/64 2001:FDC::2/64 B.2001:FDC::1/64 2001:FDC1::2/64 C.FD00:1AC0:872E::1/64 FD00:2BE1:2320::1/64 D.FE80::1/64 FE80::2/64 答案:B 注释&…

图数据库 之 Neo4j - 背景介绍(1)

引言 Neo4j是一种高性能的图数据库,它专门设计用于存储、管理和查询大规模的图数据。与传统的关系型数据库不同,Neo4j以图的形式存储数据,其中节点表示实体,边表示实体之间的关系。这种图数据模型非常适合表示复杂的关系和连接。…

Termux配置安卓编译环境

前言 Termux安装后,就相当于把手机变成了一台Linux服务器,而且现在手机卡通常是能拿到ipv6公网地址的,所以,这个服务器能干啥? 编程搭建网站跑脚本 本文讲述的就是怎么在Termux搭建安卓编译环境,实现手机…

GraphicsMagick 的 OpenCL 开发记录(三十二)

文章目录 如何写ScaleImage()的硬件加速函数&#xff08;六&#xff09; <2022-04-27 周三> 如何写ScaleImage()的硬件加速函数&#xff08;六&#xff09; 不管什么事儿看来都怕琢磨&#xff0c;如果连做梦都能梦到你正在琢磨的事儿&#xff0c;估计离成功也就不远了。…

c++之说_12|模板

关于模板&#xff0c;至少我们要先了解几个概念 一&#xff1a;函数模板 二&#xff1a;类模板 三&#xff1a;模板特化 四&#xff1a;形参参数包 模板覆盖的东西太多 我目前也不了解太多 函数模板 语法 template<typename 类型名,typename 类型名,typename ...多参…

【JavaScript学习路线——详细讲解】

JavaScript学习路线 1. 介绍2. JavaScript基础3. HTML/CSS与JavaScript结合4. 进阶JavaScript5. 前端框架与库6. API与HTTP通信7. 移动端和PWA8. Node.js和后端开发9. 测试和部署10. 全栈项目实践11. 持续学习和社区参与 1. 介绍 学习JavaScript的路线可以分为几个主要阶段&am…

【水文】计算斐波那契数列的第n项

#include <stdio.h> // 函数声明 int fibonacci(int n); int main() { // 输入正整数n int n; printf("请输入一个正整数 n&#xff1a;"); scanf("%d", &n); // 调用函数计算斐波那契数列的第n项并输出结果 int result …

CopyOnWriteArrayList底层原理全面解析【建议收藏】

简介 CopyOnWriteArrayList是Java中的一个线程安全的集合类&#xff0c;是ArrayList线程安全版本&#xff0c;主要通过Copy-On-Write&#xff08;写时复制&#xff0c;简称COW&#xff09;机制来保证线程安全。 Copy-On-Write机制核心思想&#xff1a;向一个数组中添加数据时…

LabVIEW动平衡测试与振动分析系统

LabVIEW动平衡测试与振动分析系统 介绍了利用LabVIEW软件和虚拟仪器技术开发一个动平衡测试与振动分析系统。该系统旨在提高旋转机械设备的测试精度和可靠性&#xff0c;通过精确测量和分析设备的振动数据&#xff0c;以识别和校正不平衡问题&#xff0c;从而保证机械设备的高…

Leetcode 322 零钱兑换

题意理解&#xff1a; 给你一个整数数组 coins &#xff0c;表示不同面额的硬币&#xff1b;以及一个整数 amount &#xff0c;表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额&#xff0c;返回 -1 。 你可以认为每种硬币…

Springboot集成jasypt实现配置文件加密

Jasypt它提供了单密钥对称加密和非对称加密两种加密方式。 单密钥对称加密&#xff1a;一个密钥加盐&#xff0c;可以同时用作内容的加密和解密依据&#xff1b; 非对称加密&#xff1a;使用公钥和私钥两个密钥&#xff0c;才可以对内容加密和解密&#xff1b; 我们以单密钥对称…

前端 reduce()用法总结

定义 reduce()方法对数组中的每个元素执行一个由您提供的reducer函数(升序执行)&#xff0c;将其结果汇总为单个返回值。语法为&#xff1a; array.reduce(function(accumulator, currentValue, currentIndex, arr), initialValue); /*accumulator: 必需。累计器currentValu…

5 步轻松上手,教你从 0 到 1 落地 Jmeter 接口自动化脚本!

Jmeter是进行接口测试的一款非常主流的工具&#xff0c;但绝大部分测试工程师&#xff0c;对于Jmeter接口测试脚本整理都是一知半解的。今天这篇文章&#xff0c;就以一个金融项目中接口为例&#xff0c;通过简单5步&#xff0c;教大家如何0代码编写Jmeter接口自动化脚本&#…

CPU和GPU有什么区别,玩游戏哪个更重要?

大家好&#xff01;今天我们要聊的话题是CPU和GPU&#xff0c;它们在电脑中扮演着重要的角色&#xff0c;虽然看起来只是两个简单的缩写&#xff0c;但它们的功能和影响是截然不同的&#xff01; 那么&#xff0c;究竟CPU和GPU有什么区别呢&#xff1f;在玩游戏时&#xff0c;…

Linux 系统开启网络服务

首先&#xff0c;大家新装的linux系统可能都没有安装vim工具&#xff0c;所以打开文件的方式是 vi /etc/sysconfig/network-scripts/ifcfg-ens33在这个界面把onboot改为yes&#xff0c;我这里是设置完的。然后通过下面语句重新启动服务就可以了。 service network restartcen…

2024.2.7日总结(小程序开发4)

页面导航 页面导航是页面之间的相互跳转&#xff1a; <a>链接location.href 小程序中实现页面导航的两种方式&#xff1a; 声明式导航 在页面上声明一个<navigator>导航组件通过点击<navigator>组件实现页面跳转 编程式导航 调用小程序的导航API&…

飞天使-k8s知识点15-kubernetes散装知识点4-CNI网络插件与kubectl

文章目录 CNI 网络插件安装任意节点运行kubectlAPI的版本区别与废弃API查询 CNI 网络插件安装 这里将以 Calico 为例&#xff0c;提供在 Kubernetes 1.20.6 版本上安装 CNI 插件的步骤。请注意&#xff0c;具体的步骤可能会因 CNI 插件的类型和你的特定环境而略有不同。设置 Ku…

BaseMapper中提供的方法(17种CRUD)

BaseMapper封装的17种增删改查方法 MybatisPlus框架中mapper层继承了BaseMapper接口&#xff0c;该接口中封装了常用的增删改查方法&#xff0c;共有17种&#xff0c;以下是方法的详情介绍 首先需要明确的括号内的一些对象定义 泛型T&#xff1a;实体类类型Param注解&#x…

JavaScript 设计模式之单例模式

单例模式 常规单例 单例模式我们在日常使用中还是非常多的&#xff0c;比如常见的 jQuery&#xff0c;prototype&#xff0c;vue等都是属于单例模式&#xff0c;我们在使用 new Vue 的时候&#xff0c;返回的也会是同一个实例的&#xff0c;简单实现 // 方式一 let Car func…

mybatis-plus循环处理多个条件的 or 查询

我们一般用 mybatis-plus 的提供的 api 接口处理 List、Set 作为条件查询的时候&#xff0c;都会使用 in&#xff0c;例如 &#xff08;Student 类省略 没啥好些的&#xff09;&#xff1a; LambdaQueryWrapper<Student> queryWrapper new QueryWrapper<Student>…