文章目录
- 如何写`ScaleImage()`的硬件加速函数(六)
<2022-04-27 周三>
如何写ScaleImage()
的硬件加速函数(六)
不管什么事儿看来都怕琢磨,如果连做梦都能梦到你正在琢磨的事儿,估计离成功也就不远了。似乎目前已经达到了最好的效果,离目标越来越近了。
- 要理解
clEnqueueNDRangeKernel()
函数的第五第六个参数意义,但目前为止只能说暂时理解了。
cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue,cl_kernel kernel,cl_uint work_dim,const size_t *global_work_offset,const size_t *global_work_size,const size_t *local_work_size,cl_uint num_events_in_wait_list,const cl_event *event_wait_list,cl_event *event)
- 第五第六个参数要结合
__attribute__
,否则无法调用kernel
函数。
__kernel __attribute__((reqd_work_group_size(256, 1, 1)))
- 来回理解
ResizeImage()
和ScaleImage()
函数的实现,对它们的内部逻辑流程了如指掌了可以说。 - 我选择以
ResizeHorizontalFilter()
为模板修改,之所以ResizeImage()
处理速度慢,因为它的处理效果好,且有多种过滤效果可供选择,ResizeHorizontalFilter()
是处理水平方向缩放,所以它将读入一整行原图像素,这正好和ScaleImage()
的最内层循环处理方式相同。 ResizeHorizontalFilter()
的最内层循环(如下),因为有累加操作,所以这正是处理水平缩放的操作。
for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++)
{/* float weight = getResizeFilterWeight(resizeFilterCubicCoefficients,(ResizeWeightingFunctionType) resizeFilterType,(ResizeWeightingFunctionType) resizeWindowType,resizeFilterScale, resizeFilterWindowSupport,resizeFilterBlur, scale*(start + i - bisect + 0.5)); */float weight = getResizeFilterWeightForGM(resizeFilterType,scale*(start + i - bisect + 0.5), support);float4 cp = (float4)0.0f;__local CLQuantum *p = inputImageCache + (cacheIndex*4);cp.x = (float) *(p);cp.y = (float) *(p + 1);cp.z = (float) *(p + 2);if (matte_or_cmyk != 0){cp.w = (float) *(p + 3);// float alpha = weight * QuantumScale * cp.w;// error: use of type 'double' requires cl_khr_fp64 supportfloat alpha = weight * (1 - (float) cp.w / 255);filteredPixel.x += alpha * cp.x;filteredPixel.y += alpha * cp.y;filteredPixel.z += alpha * cp.z;filteredPixel.w += weight * cp.w;gamma += alpha;}elsefilteredPixel += ((float4) weight)*cp;density += weight;
}
- “如何写
ScaleImage()
的硬件加速函数(五)”的问题在于没有办法处理图片下半部分(如何缩小一半的话),这里主要是因为y
变量的限定(代码如下),因为传入kernel
函数的gsize[1]=resizedRows;
被限定的死死的。
const unsigned int pos = getPixelIndex(4, inputColumns, cacheRangeStartX, y);
- 目前只考虑按比例缩放,所以这里的
y
需要除以缩放比。 - 缩小后图片如果垂直方向相间着黑色宽竖条,那可能是因为
numCachedPixels
参数没有计算正确,这正可以修复“如何写ScaleImage()
的硬件加速函数(五)”中的scale_ratio
变量。
numCachedPixels=(int) ceil((pixelPerWorkgroup-1)/xFactor+2*support);
- 附上目前代码:
static MagickBooleanType scaleFilter(MagickCLDevice device,cl_command_queue queue,const Image *image,Image *filteredImage,cl_mem imageBuffer,cl_uint matte_or_cmyk,cl_uint columns,cl_uint rows,cl_mem scaledImageBuffer,cl_uint scaledColumns,cl_uint scaledRows,ExceptionInfo *exception)
{cl_kernelscaleKernel;cl_intstatus;const unsigned intworkgroupSize = 256;floatscale;intnumCachedPixels;MagickBooleanTypeoutputReady;size_tgammaAccumulatorLocalMemorySize,gsize[2],i,imageCacheLocalMemorySize,pixelAccumulatorLocalMemorySize,lsize[2],totalLocalMemorySize,weightAccumulatorLocalMemorySize;unsigned intchunkSize,pixelPerWorkgroup;scaleKernel=NULL;outputReady=MagickFalse;scale=(float) scaledColumns/columns; // TODO(ocl)if (scaledColumns < workgroupSize){chunkSize=32;pixelPerWorkgroup=32;}else{chunkSize=workgroupSize;pixelPerWorkgroup=workgroupSize;}DisableMSCWarning(4127)while(1)
RestoreMSCWarning{/* calculate the local memory size needed per workgroup */numCachedPixels=(int) ceil((pixelPerWorkgroup-1)/scale+2*(0.5+MagickEpsilon)); // TODO(ocl)imageCacheLocalMemorySize=numCachedPixels*sizeof(CLQuantum)*4;totalLocalMemorySize=imageCacheLocalMemorySize;/* local size for the pixel accumulator */pixelAccumulatorLocalMemorySize=chunkSize*sizeof(cl_float4);totalLocalMemorySize+=pixelAccumulatorLocalMemorySize;/* local memory size for the weight accumulator */weightAccumulatorLocalMemorySize=chunkSize*sizeof(float);totalLocalMemorySize+=weightAccumulatorLocalMemorySize;/* local memory size for the gamma accumulator */gammaAccumulatorLocalMemorySize=chunkSize*sizeof(float);totalLocalMemorySize+=gammaAccumulatorLocalMemorySize;if (totalLocalMemorySize <= device->local_memory_size)break;else{pixelPerWorkgroup=pixelPerWorkgroup/2;chunkSize=chunkSize/2;if ((pixelPerWorkgroup == 0) || (chunkSize == 0)){/* quit, fallback to CPU */goto cleanup;}}}scaleKernel=AcquireOpenCLKernel(device,"ScaleFilter");if (scaleKernel == (cl_kernel) NULL){(void) OpenCLThrowMagickException(device,exception,GetMagickModule(),ResourceLimitWarning,"AcquireOpenCLKernel failed.", ".");goto cleanup;}i=0;status =SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_mem),(void*)&imageBuffer);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_uint),(void*)&matte_or_cmyk);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_uint),(void*)&columns);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_uint),(void*)&rows);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_mem),(void*)&scaledImageBuffer);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_uint),(void*)&scaledColumns);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(cl_uint),(void*)&scaledRows);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(float),(void*)&scale);status|=SetOpenCLKernelArg(scaleKernel,i++,imageCacheLocalMemorySize,NULL);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(int),&numCachedPixels);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(unsigned int),&pixelPerWorkgroup);status|=SetOpenCLKernelArg(scaleKernel,i++,sizeof(unsigned int),&chunkSize);status|=SetOpenCLKernelArg(scaleKernel,i++,pixelAccumulatorLocalMemorySize,NULL);status|=SetOpenCLKernelArg(scaleKernel,i++,weightAccumulatorLocalMemorySize,NULL);status|=SetOpenCLKernelArg(scaleKernel,i++,gammaAccumulatorLocalMemorySize,NULL);if (status != CL_SUCCESS){(void) OpenCLThrowMagickException(device,exception,GetMagickModule(),ResourceLimitWarning,"SetOpenCLKernelArg failed.",".");goto cleanup;}gsize[0] = (scaledColumns + pixelPerWorkgroup - 1) / pixelPerWorkgroup *workgroupSize;gsize[1] = scaledRows;lsize[0] = workgroupSize;lsize[1] = 1;outputReady=EnqueueOpenCLKernel(queue,scaleKernel,2,(const size_t *) NULL,gsize,lsize,image,filteredImage,MagickFalse,exception);cleanup:if (scaleKernel != (cl_kernel) NULL)ReleaseOpenCLKernel(scaleKernel);return(outputReady);
}
STRINGIFY(
__kernel __attribute__((reqd_work_group_size(256, 1, 1)))void ScaleFilter(const __global CLQuantum *inputImage, const unsigned int matte_or_cmyk,const unsigned int inputColumns, const unsigned int inputRows, __global CLQuantum *filteredImage,const unsigned int filteredColumns, const unsigned int filteredRows,const float resizeFilterScale,__local CLQuantum *inputImageCache, const int numCachedPixels,const unsigned int pixelPerWorkgroup, const unsigned int pixelChunkSize,__local float4 *outputPixelCache, __local float *densityCache, __local float *gammaCache)
{// calculate the range of resized image pixels computed by this workgroupconst unsigned int startX = get_group_id(0) * pixelPerWorkgroup;const unsigned int stopX = MagickMin(startX + pixelPerWorkgroup, filteredColumns);const unsigned int actualNumPixelToCompute = stopX - startX;float xFactor = (float)filteredColumns / inputColumns;// calculate the range of input image pixels to cacheconst int cacheRangeStartX = MagickMax((int)((startX + 0.5f) / xFactor), (int)(0));const int cacheRangeEndX = MagickMin((int)(cacheRangeStartX + numCachedPixels), (int)inputColumns);// cache the input pixels into local memoryconst unsigned int y = get_global_id(1);const unsigned int pos = getPixelIndex(4, inputColumns, cacheRangeStartX, y / xFactor);const unsigned int num_elements = (cacheRangeEndX - cacheRangeStartX) * 4;event_t e = async_work_group_copy(inputImageCache, inputImage + pos, num_elements, 0);wait_group_events(1, &e);unsigned int totalNumChunks = (actualNumPixelToCompute + pixelChunkSize - 1) / pixelChunkSize;for (unsigned int chunk = 0; chunk < totalNumChunks; chunk++){const unsigned int chunkStartX = startX + chunk * pixelChunkSize;const unsigned int chunkStopX = MagickMin(chunkStartX + pixelChunkSize, stopX);const unsigned int actualNumPixelInThisChunk = chunkStopX - chunkStartX;// determine which resized pixel computed by this workitemconst unsigned int itemID = get_local_id(0);const unsigned int numItems = getNumWorkItemsPerPixel(actualNumPixelInThisChunk, get_local_size(0));const int pixelIndex = pixelToCompute(itemID, actualNumPixelInThisChunk, get_local_size(0));float4 filteredPixel = (float4)0.0f;// -1 means this workitem doesn't participate in the computationif (pixelIndex != -1){// x coordinated of the resized pixel computed by this workitemconst int x = chunkStartX + pixelIndex;// calculate how many steps required for this pixelconst float bisect = (x + 0.5) / xFactor + MagickEpsilon;const unsigned int start = (unsigned int)MagickMax(bisect, 0.0f);const unsigned int stop = (unsigned int)MagickMin(bisect + 1, (float)inputColumns);const unsigned int n = stop - start;// calculate how many steps this workitem will contributeunsigned int numStepsPerWorkItem = n / numItems;numStepsPerWorkItem += ((numItems * numStepsPerWorkItem) == n ? 0 : 1);const unsigned int startStep = (itemID % numItems) * numStepsPerWorkItem;if (startStep < n){const unsigned int stopStep = MagickMin(startStep + numStepsPerWorkItem, n);unsigned int cacheIndex = start + startStep - cacheRangeStartX;for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++){float4 cp = (float4)0.0f;__local CLQuantum* p = inputImageCache + (cacheIndex * 4);cp.x = (float)*(p);cp.y = (float)*(p + 1);cp.z = (float)*(p + 2);cp.w = (float)*(p + 3);filteredPixel += cp;}}}if (itemID < actualNumPixelInThisChunk){WriteAllChannels(filteredImage, 4, filteredColumns, chunkStartX + itemID, y, filteredPixel);}}
}
)