改进神经网络

Improve NN

文章目录

  • Improve NN
    • train/dev/test set
    • Bias/Variance
    • basic recipe
    • Regularization
      • Logistic Regression
      • Neural network
      • other ways
    • optimization problem
      • Normalizing inputs
      • vanishing/exploding gradients
      • weight initialize
      • gradient check
        • Numerical approximation
        • grad check

train/dev/test set

0.7/0/0.3 0.6.0.2.0.2 -> 100-10000

0.98/0.01/0.01 … -> big data

Bias/Variance

偏差度量的是单个模型的学习能力,而方差度量的是同一个模型在不同数据集上的稳定性。

在这里插入图片描述

high variance ->high dev set error

high bias ->high train set error

basic recipe

high bias -> bigger network / train longer / more advanced optimization algorithms / NN architectures

high variance -> more data / regularization / NN architecture

Regularization

Logistic Regression

L 2 r e g u l a r i z a t i o n : m i n J ( w , b ) → J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∥ w ∥ 2 2 L2\;\; regularization:\\min\mathcal{J}(w,b)\rightarrow J(w,b)=\frac{1}{m}\sum_{i=1}^m\mathcal{L}(\hat y^{(i)},y^{(i)})+\frac{\lambda}{2m}\Vert w\Vert_2^2 L2regularization:minJ(w,b)J(w,b)=m1i=1mL(y^(i),y(i))+2mλw22

Neural network

F r o b e n i u s n o r m ∥ w [ l ] ∥ F 2 = ∑ i = 1 n [ l ] ∑ j = 1 n [ l − 1 ] ( w i , j [ l ] ) 2 D r o p o u t r e g u l a r i z a t i o n : d 3 = n p . r a n d m . r a n d ( a 3. s h a p e . s h a p e [ 0 ] , a 3. s h a p e [ 1 ] < k e e p . p r o b ) a 3 = n p . m u l t i p l y ( a 3 , d 3 ) a 3 / = k e e p . p r o b Frobenius\;\; norm\\ \Vert w^{[l]}\Vert^2_F=\sum_{i=1}^{n^{[l]}}\sum_{j=1}^{n^{[l-1]}}(w_{i,j}^{[l]})^2\\\\ Dropout\;\; regularization:\\ d3=np.randm.rand(a3.shape.shape[0],a3.shape[1]<keep.prob)\\ a3=np.multiply(a3,d3)\\ a3/=keep.prob Frobeniusnormw[l]F2=i=1n[l]j=1n[l1](wi,j[l])2Dropoutregularization:d3=np.randm.rand(a3.shape.shape[0],a3.shape[1]<keep.prob)a3=np.multiply(a3,d3)a3/=keep.prob

other ways

  • early stopping
  • data augmentation

optimization problem

speed up the training of your neural network

Normalizing inputs

  1. subtract mean

μ = 1 m ∑ i = 1 m x ( i ) x : = x − μ \mu =\frac{1}{m}\sum _{i=1}^{m}x^{(i)}\\ x:=x-\mu μ=m1i=1mx(i)x:=xμ

  1. normalize variance

σ 2 = 1 m ∑ i = 1 m ( x ( i ) ) 2 x / = σ \sigma ^2=\frac{1}{m}\sum_{i=1}^m(x^{(i)})^2\\ x/=\sigma σ2=m1i=1m(x(i))2x/=σ

vanishing/exploding gradients

y = w [ l ] w [ l − 1 ] . . . w [ 2 ] w [ 1 ] x w [ l ] > I → ( w [ l ] ) L → ∞ w [ l ] < I → ( w [ l ] ) L → 0 y=w^{[l]}w^{[l-1]}...w^{[2]}w^{[1]}x\\ w^{[l]}>I\rightarrow (w^{[l]})^L\rightarrow\infty \\w^{[l]}<I\rightarrow (w^{[l]})^L\rightarrow0 y=w[l]w[l1]...w[2]w[1]xw[l]>I(w[l])Lw[l]<I(w[l])L0

weight initialize

v a r ( w ) = 1 n ( l − 1 ) w [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 1 n ( l − 1 ) ) var(w)=\frac{1}{n^{(l-1)}}\\ w^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{(l-1)}}) var(w)=n(l1)1w[l]=np.random.randn(shape)np.sqrt(n(l1)1)

gradient check

Numerical approximation

f ( θ ) = θ 3 f ′ ( θ ) = f ( θ + ε ) − f ( θ − ε ) 2 ε f(\theta)=\theta^3\\ f'(\theta)=\frac{f(\theta+\varepsilon)-f(\theta-\varepsilon)}{2\varepsilon} f(θ)=θ3f(θ)=2εf(θ+ε)f(θε)

grad check

d θ a p p r o x [ i ] = J ( θ 1 , . . . θ i + ε . . . ) − J ( θ 1 , . . . θ i − ε . . . ) 2 ε = d θ [ i ] c h e c k : ∥ d θ a p p r o x − d θ ∥ 2 ∥ d θ a p p r o x ∥ 2 + ∥ d θ ∥ 2 < 1 0 − 7 d\theta_{approx}[i]=\frac{J(\theta_1,...\theta_i+\varepsilon...)-J(\theta_1,...\theta_i-\varepsilon...)}{2\varepsilon}=d\theta[i]\\ check:\frac{\Vert d\theta_{approx}-d\theta\Vert_2}{\Vert d\theta_{approx}\Vert_2+\Vert d\theta\Vert_2}<10^{-7} dθapprox[i]=2εJ(θ1,...θi+ε...)J(θ1,...θiε...)=dθ[i]check:dθapprox2+dθ2dθapproxdθ2<107

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/672417.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python flask 魔术方法

魔术方法作用_init_对象的初始化方法_class_返回对象所属的类_module_返回类所在的模块_mro_返回类的调用顺序&#xff0c;可以找到其父类&#xff08;用于找父类&#xff09;_base_获取类的直接父类&#xff08;用于找父类&#xff09;_bases_获取父类的元组&#xff0c;按它们…

Adaptec RAID 控制器arcconf 管理命令的常见的查询操作

ARCCONF命令行工具可以在服务器正常运行过程中对Adaptec RAID卡进行带内在线查询配置操作&#xff0c;无需重启服务器&#xff0c;十分方便快捷&#xff0c;本文讲解常见的查询操作。 一、查询流程 二、常见指令 1、查询已安装的RAID卡清单 [rootlocalhost ~]# ./arcconf-lin…

DolphinScheduler本地安装

文章目录 前言1. 安装部署DolphinScheduler1.1 启动服务 2. 登录DolphinScheduler界面3. 安装内网穿透工具4. 配置Dolphin Scheduler公网地址5. 固定DolphinScheduler公网地址 前言 本篇教程和大家分享一下DolphinScheduler的安装部署及如何实现公网远程访问&#xff0c;结合内…

【Web - 框架 - Vue】随笔 - 通过`CDN`的方式使用`VUE 2.0`和`Element UI`

通过CDN的方式使用VUE 2.0和Element UI VUE 网址 https://cdn.bootcdn.net/ajax/libs/vue/2.7.16/vue.js源码 https://download.csdn.net/download/HIGK_365/88815507测试 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset&quo…

储氢材料行业调研:市场需求将不断增长

近年来&#xff0c;热度持续升温的碳中和、碳达峰话题&#xff0c;使得氢能及其相关产业被高度关注&#xff0c;而决定氢能应用关键的是安全、高效的氢能储运技术。在氢能需求不断增长的情况下&#xff0c;储氢材料行业是市场也将不断发展。在氢能需求不断增长的情况下,储氢材料…

如何实现Vuex本地存储

在前端开发中&#xff0c;Vuex是一款非常强大的状态管理工具&#xff0c;但是默认情况下&#xff0c;Vuex的数据是存储在内存中的&#xff0c;刷新页面后数据将会丢失。这往往会导致用户在刷新页面后需要重新登录等繁琐的操作。本篇文章将教会您如何实现Vuex的本地存储&#xf…

从零开始手写mmo游戏从框架到爆炸(一)— 开发环境

一、创建项目 1、首先创建一个maven项目&#xff0c;pom文件如下&#xff1a; <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0…

【JavaEE Spring】Spring 原理

Spring 原理 1. Bean的作⽤域1.1 概念1.2 Bean的作⽤域 2. Bean的⽣命周期 1. Bean的作⽤域 1.1 概念 在Spring IoC&DI阶段, 我们学习了Spring是如何帮助我们管理对象的. 通过 Controller , Service , Repository , Component , Configuration ,Bean 来声明Bean对象。通…

img图片鉴权附加token

<img 标签预览图片如何携带token进行验证 前言 vue中给img的src添加token 因项目中安全测评的需要&#xff0c;请求图片时要求添加token&#xff0c;方法如下&#xff1a;在项目中循环渲染的img标签中的图片要显示&#xff0c;src需要加请求头token&#xff08;正常情况下&…

Gartner 2024年十大战略技术趋势解读

最近Gartner发布了2024年十大战略技术趋势报告&#xff0c;这十大技术趋势中有七项是关于AI技术及其技术应用相关。下面我们做一个简单解读。 首先&#xff0c;报告中着重强调了AI信任、风险和安全管理的重要性。企业需要对AI应用实施信任、风险和安全管理&#xff0c;以提高决…

基于FPGA实现ICMP协议(包含源工程文件)

前文对IP协议和ICMP协议格式做了讲解&#xff0c;本文通过FPGA实现ICMP协议&#xff0c;PC端向开发板产生回显请求&#xff0c;FPGA接收到回显请求时&#xff0c;向PC端发出回显应答。为了不去手动绑定开发板的MAC地址和IP地址&#xff0c;还是需要ARP模块。 1、顶层设计 顶层…

基于Java农产品商城系统设计与实现(源码+部署文档)

博主介绍&#xff1a; ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ &#x1f345; 文末获取源码联系 &#x1f345; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅 &#x1f447;&#x1f3fb; 不然下次找不到 Java项目精品实…

计算机毕业设计 基于SpringBoot的城市垃圾分类管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

人工智能专题:量子汇编语言和量子中间表示发展白皮书

今天分享的是人工智能系列深度研究报告&#xff1a;《人工智能专题&#xff1a;量子汇编语言和量子中间表示发展白皮书》。 &#xff08;报告出品方&#xff1a;量子信息网络产业联盟&#xff09; 报告共计&#xff1a;78页 量子计算与量子编程概述 随着社会生产力的发展&am…

laravel distinct查询问题,laravel子查询写法

直接调用后&#xff0c;count查询会和实际查询的数据对不上&#xff0c;count还是查询全部数据&#xff0c;而实际的列表是去重的。 给distinct加上参数&#xff0c;比如去重的值的id&#xff0c;就加id。 另一种写法是使用group by id 子查询。 sql语句&#xff1a; selec…

Java+SpringBoot:构建稳定高效的计算机基础教学平台

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

three.js 向量方向(归一化.normalize)

效果&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div><p><el-button type"primary…

【开源】JAVA+Vue+SpringBoot实现房屋出售出租系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 房屋销售模块2.2 房屋出租模块2.3 预定意向模块2.4 交易订单模块 三、系统展示四、核心代码4.1 查询房屋求租单4.2 查询卖家的房屋求购单4.3 出租意向预定4.4 出租单支付4.5 查询买家房屋销售交易单 五、免责说明 一、摘…

DAY5.

握手&#xff1a; 第一次握手&#xff1a;客户端发送SYN包给服务器&#xff0c;并进入SYN_SENT状态&#xff0c;等待服务器返回确认包。 第二次握手&#xff1a;服务器接收到SYN包&#xff0c;确认客户端的SYN&#xff0c;发送ACK包&#xff0c;同时发送一个SYN包&#xff0c;…

Android开发--实时监测系统+部署故障诊断算法

0.项目整体思路介绍&#xff1a; 搭建无人装备模拟实验平台&#xff0c;使用采集器对数据进行采集&#xff0c;通过网络通信Udp协议发送到安卓端&#xff0c;安卓端作界面显示&#xff0c;算法使用matlab仿真后&#xff0c;用C语言实现。将采集器采集到的数据经过处理后训练&a…