正点原子--STM32基本定时器学习笔记(1)

目录

1. 定时器概述

1.1 软件定时原理

1.2 定时器定时原理

1.3 定时器分类

1.4 定时器特性表

1.5 基本、通用、高级定时器的功能整体区别

2. 基本定时器简介

3. 基本定时器框图

时钟树分析


这部分是笔者对基本定时器的理论知识进行学习与总结!主要记录学习过程中遇到的重难点,其他一些基础点就一笔带过了!

1. 定时器概述

1.1 软件定时原理

使用纯软件(CPU死等)的方式实现定时(延时)功能。

比如想要延时1s,那么CPU就卡在延时函数里1s,什么事情都不能干,就会大大占用CPU资源。

软件定时不精准的原因:
1.函数调用有一个压栈和出栈的过程,压栈和出栈也需要消耗时间。
2.stm32是arm架构,有三级流水线,( 流水线可以在一个时钟周期内同时处理多个指令的不同阶段,降低了单个指令的执行时间。),所以指令执行的时间是不确定的。
因为有压栈出栈的不确定,以及流水线指令执行时间的不确定,导致软件编写的函数是一个不精准的延时。

1.2 定时器定时原理

使用精准的时钟源,通过硬件的方式,实现定时功能;定时器核心就是计数器。

时钟源(CLK)通过预分频器(PSC)分频,得到TIM CLK(定时器工作的时钟频率),每来一个时钟,计数器就计一个数,当计数值到达自动重装载值时产生事件/中断,达到计时的效果。

1.3 定时器分类

1.4 定时器特性表

F1系列

说明:

计数器位数表示定时器可以计数的值,16位可以计数2^16 = 65536个数,计数范围0~65535;

当计数时间到后会产生DMA请求;

1.5 基本、通用、高级定时器的功能整体区别

从基本定时器到通用定时器到高级定时器层层迭代!基本定时器具有的功能通用定时器都有,通用定时器具有的功能高级定时器都有。

2. 基本定时器简介

基本定时器有两个,TIM6和TIM7

主要特性:

16位递增计数器(计数值范围:0~65535),16位预分频器(分频系数:1~65536)

定时器溢出时,会产生触发信号,用于触发DAC,进行数模转换;

在更新事件(计数器溢出)时,会产生中断/DMA请求。

3. 基本定时器框图

流程框图分析:首先时钟源经过控制器来到预分频器PSC里,经过分频之后得到计数器的真正工作频率CK_CNT,每来一个时钟则计数器自增1,当计数值等于ARR(影子寄存器)的值时,会产生溢出,即产生事件/中断。

第①部分:定时器时钟TIMxCLK,即内部时钟CK_INT;

第②部分:控制器控制CNT计数器复位、使能、计数;当CNT计数器溢出时触发控制器产生触发输出信号TRGO,触发一次DAC数模转换。

第③部分:

影子寄存器:是实际起作用的寄存器,不能直接访问,而ARPE位决定了ARR是否具有缓冲,当设置为有缓冲时,ARR的预装载寄存器写入某个值,这个值不会立即起作用,必须等到更新事件发生时,才会把ARR的预装载寄存器的值转移到影子寄存器,从而真正起作用生效;而设置无缓冲时,给ARR的预装载寄存器写入某个值,它会立即转移到影子寄存器中,会立即生效。

预装载寄存器实际上起到一个缓冲的作用。

特别说明: 

两者区别:计数器溢出时,默认会产生事件,也可以人为设置为不产生事件;而中断和DMA请求是默认不产生,可以人为的配置它产生。
总的来说,当计数器溢出时,事件会默认产生,中断和DMA输出默认不产生。

产生更新事件后,会让预装载寄存器的值加载到对应的影子寄存器当中。预装载寄存器是黑色的那个框框,影子寄存器是灰色的那个矩形。

时钟树分析

模块框图

在《STM32F103系列数据手册》 中可以找到该模块框图,由图知,TIM6和TIM7挂载在APB1总线,该总线的最高频率为36M。

由时钟树得知,想要TIM2~TIM7的时钟频率为72MHz,就要对AHB、APB1进行分频配置,下面两张图分别是通过STM32CubeMX配置的时钟树,以及正点原子官方给的sys.c文件中的时钟树配置,配置效果都是一样,对AHB进行1分频,APB1进行2分频,APB2进行1分频。当SYSCLK为最大72MHz时,AHB进行1分频为72M,APB1进行2分频为36M,因为此时APB1的预分频系数≠1,所以输入到定时器2~7的TIMXCLK为36M*2=72M。

STM32CubeMX配置
正点原子提供的SYSTEM

本篇完。

本人博客仅代表个人见解方便记录成长笔记。

若有不足,请指出,感谢您的阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/672184.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UsernamePasswordAutheticationFilter源码解读和实践

UsernamePasswordAuthenticationFilter的目录 一、概述(重点)二、标红小步骤解读2.1 步骤1(标红1)2.1.1 AbstractAuthenticationProcessingFilter2.1.2 UsernamePasswordAuthenticationFilter 2.3 步骤2 和 步骤3(标红…

【SpringBoot篇】解决Redis分布式锁的 误删问题 和 原子性问题

文章目录 🍔Redis的分布式锁🛸误删问题🎈解决方法🔎代码实现 🛸原子性问题🌹Lua脚本 ⭐利用Java代码调用Lua脚本改造分布式锁🔎代码实现 🍔Redis的分布式锁 Redis的分布式锁是通过利…

synchronized 浅读解析 一

引言 在学习synchronized前,我们实际上是需要先了解Java对象在jvm中的储存结构,在了解了它的实际储存方式后,再对后边的锁学习会有一个更好更深入的理解。 一、对象结构 我们为什么要知道什么是对象头 在学习synchronized的时候&#xff0c…

破除Github API接口的访问次数限制

破除Github API接口的访问次数限制 1、Github介绍2、Github API接口2.1 介绍2.2 使用方法 3、Github API访问限制3.1 访问限制原因3.2 访问限制类别 4、Github API访问限制破除4.1 限制破除原理4.2 限制破除示例 1、Github介绍 Github,是一个面向开源及私有软件项目…

提升你的PHP开发效率:探索JetBrains PhpStorm 2022的全新特性

在当今快速发展的软件开发领域,选择一个强大且高效的开发工具对于提升开发效率、保证代码质量至关重要。对于PHP开发者来说,JetBrains PhpStorm一直是市场上最受欢迎的IDE之一。随着JetBrains PhpStorm 2022的发布,这款工具带来了一系列创新功…

MybatisPlus快速入门及常见设置

目录 一、快速入门 1.1 准备数据 1.2 创建SpringBoot工程 1.3 使用MP 1.4 获取Mapper进行测试 二、常用设置 2.1 设置表映射规则 2.1.1 单独设置 2.1.2 全局设置 2.2 设置主键生成策略 2.2.1 为什么会有雪花算法? 2.2.2 垂直分表 2.2.3 水平分表 2.…

JavaScript流程控制详解之顺序结构和选择结构

流程控制 流程控制,指的是控制程序按照怎样的顺序执行 在JavaScript中,共有3种流程控制方式 顺序结构选择结构循环结构 顺序结构 在JavaScript中,顺序结构是最基本的结构,所谓的顺序结构,指的是代码按照从上到下、…

上海亚商投顾:沪指涨超3% 深成指和创指双双飙涨超6%

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 今日A股三大指数一改近期低迷状态,早盘小幅低开后一路高歌猛进集体大涨,沪指涨超3%&am…

锁(二)队列同步器AQS

一、队列同步器AQS 1、定义 用来构建锁或者其他同步组件的基础框架,它使用了一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作。是实现锁的关键。 2、实现 同步器的设计是基于模板方法模式的,也就是说&#…

如何安装x11vnc并结合cpolar实现win远程桌面Deepin

文章目录 1. 安装x11vnc2. 本地远程连接测试3. Deepin安装Cpolar4. 配置公网远程地址5. 公网远程连接Deepin桌面6. 固定连接公网地址7. 固定公网地址连接测试 正文开始前给大家推荐个网站,前些天发现了一个巨牛的 人工智能学习网站, 通俗易懂&#xff…

11.0 Zookeeper watcher 事件机制原理剖析

zookeeper 的 watcher 机制,可以分为四个过程: 客户端注册 watcher。服务端处理 watcher。服务端触发 watcher 事件。客户端回调 watcher。 其中客户端注册 watcher 有三种方式,调用客户端 API 可以分别通过 getData、exists、getChildren …

GLSL ES 1.0

GLSL ES 概述 写在前面 程序是大小写敏感的每一个语句都应该以英文分号结束一个shader必须包含一个main函数,该函数不接受任何参数,并且返回voidvoid main() { }数据值类型 GLSL支持三种数据类型: 整型浮点型:必须包含小数点&…

python 动态显示数据。

界面显示动态的数据。 from time import sleep import serialimport tkinter as tklis[1,10,40] # 打开串行端口 ser serial.Serial(COM3, 9600) # 9600为波特率,根据实际情况进行调整# 创建窗口和画布 window tk.Tk() canvas tk.Canvas(window, width400, heig…

高阶滤波器

一阶后向差分:s(1-z^(-1))/T dx/dt[x(k)-x(k-1)]/T[x(k)-x(k)z^(-1)]/Tx(k)*(1-z^(-1))/T 一阶前向差分:s(z-1)/T dx/dt[x(k1)-x(k)]/T[z*x(k)-x(k)]/Tx(k)*(z-1)/T 双线性差分:s(2/T)*(1-z…

通过 docker-compose 部署 Flink

概要 通过 docker-compose 以 Session Mode 部署 flink 前置依赖 Docker、docker-composeflink 客户端docker-compose.yml version: "2.2" services:jobmanager:image: flink:1.17.2ports:- "8081:8081"command: jobmanagervolumes:- ${PWD}/checkpoin…

【大模型上下文长度扩展】FlashAttention:高效注意力计算的新纪元

FlashAttention:高效注意力计算的新纪元 核心思想核心操作融合,减少高内存读写成本分块计算(Tiling),避免存储一次性整个矩阵块稀疏注意力,处理长序列时的效率问题利用快速 SRAM,处理内存与计算…

【大模型上下文长度扩展】LongQLoRA:单GPU(V100)环境下的语言模型优化方案

LongQLoRA 核心问题子问题1: 预定义的上下文长度限制子问题2: 训练资源的需求高子问题3: 保持模型性能分析不足 LongQLoRA方法拆解子问题1: 上下文长度限制子问题2: 高GPU内存需求子问题3: 精确量化导致的性能损失分析不足效果 论文:https://arxiv.org/pdf/2311.048…

docker镜像结构

# 基础镜像 FROM openjdk:11.0-jre-buster # 设定时区 ENV TZAsia/Shanghai RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone # 拷贝jar包 COPY docker-demo.jar /app.jar # 入口 ENTRYPOINT ["java", "-jar"…

游泳耳机推荐性价比排行榜,四大高性价比游泳耳机推荐

随着运动健康意识的提高,越来越多的朋友选择在游泳馆进行锻炼。然而,在水中享受音乐并非易事,这就需要一款真正防水的耳机。尽管市面上有许多声称具备防水功能的耳机产品,但实际使用中往往难以达到理想的防水效果。为了帮助大家找…

之前看过的前序遍历的线索二叉树感觉写的有点问题 这里更新一下我的思路

前序线索化 #include<iostream> using namespace std;typedef int datatype; typedef struct BitNode {datatype Data;struct BitNode* leftchild;struct BitNode* rightchild;int lefttag;int righttag; }Node; #pragma region 前序线索化递归遍历 Node* previous NUL…