GLSL ES 1.0

GLSL ES 概述

写在前面

  • 程序是大小写敏感的
  • 每一个语句都应该以英文分号结束
  • 一个shader必须包含一个main函数,该函数不接受任何参数,并且返回void
    void main()
    {
    }
    

数据值类型

GLSL支持三种数据类型:

  • 整型
  • 浮点型:必须包含小数点,不然会被认为是浮点型,比如1表示整形,1.0才表示浮点型
  • 布尔类型

GLSL是强类型语言,这意味着:

  • 将浮点数赋值给一个整型变量是不对的,同理,将一个整数赋值给浮点数变量也不被允许
    // 会报错,错误信息如下:
    // Failed to compile shader: ERROR: 0:56: '=' :
    // cannot convert from 'const int' to 'mediump float'
    float a1 = 1;// 会报错,错误信息如下:
    // Failed to compile shader: ERROR: 0:56: '=' : 
    // cannot convert from 'const float' to 'mediump int'
    int a1 = 1.0;
    
  • 在一个计算表达式中,必须统一数据类型,比如一个包含浮点数的表达式中,不能使用整型数据,这个经常由于不小心的书写导致编译失败。
    // 会报错
    // Failed to compile shader: ERROR: 0:57: '*' : 
    // wrong operand types - no operation '*' exists that 
    // takes a left-hand operand of type 'mediump float' 
    // and a right operand of type 'const int'
    float a1 = 1.0;
    float a2 = a1 * 3;
    

数据转换

虽然GLSL是强类型语言,但是我们可以通过显示转换实现数据类型的转变,比如我们可以使用float()将数据类型转换为浮点数,GLSL支持float、int和bool的相互转换

// 将整数转换为浮点数
float(int)
// true被转换为1.0 false被转换为0.0
float(bool)
// 将浮点数的小数删去,整数部分转换为整型
int(float)
// 	true被转换为1 false被转换为0
int(bool)
// 0.0被转换为false,其他值转换为true
bool(float)
// 0被转换为false,其他值转换为true
bool(int)

矢量和矩阵

GLSL可以通过基本数值类型组合成矢量和矩阵,矢量的数据类型可以是浮点数,整数和bool值,但是矩阵WebGL1.0只支持浮点数

矢量

  • vec2, vec3, vec4:具有2、3、4浮点数元素的矢量
  • iec2, ivec3, ivec4:具有2、3、4整数元素的矢量
  • bec2, bec3, bec4:具有2、3、4bool值元素的矢量

矩阵

  • mat2:2x2浮点数矩阵
  • mat3:3x3浮点数矩阵
  • mat4:4x4浮点数矩阵

赋值构造

在给矢量或者矩阵赋值的时候,必须遵循:

  • 赋值两边的数据类型必须一致,不然会报错
  • 赋值两边的元素个数必须一致
  • 对于矩阵,默认的构造顺序是按照列主序的
  • 对于矩阵,如果只传递了一个数值,会构造一个对角线都是该值,其他值都是0的矩阵

访问

访问矢量和矩阵可以有两种方式,一种是通过.运算符,一种是通过[]
使用点运算符访问有三种访问方式:

  • x,y,z,w:分别对应矢量的第1、2、3、4个分量,注意:矩阵是不能用该方式访问的
  • r,g,b,a:分别对应矢量的第1、2、3、4个分量,注意:矩阵是不能用该方式访问的
  • s,t,p,q:分别对应矢量的第1、2、3、4个分量,注意:矩阵是不能用该方式访问的

对于每一种访问方式,都可以混合使用,比如:

// 下面这些访问方式都是正确的
vec4 a1 = vec4(1.0, 1.1, 1.2, 1.3);
float b1 = a1.x;
vec2 c1 = a1.xy;
vec2 d1 = a1.yx;
vec2 e1 = a1.xx;

但是不同访问方式之间不可以混合使用

矩阵的访问更简单,类似于C语言的数组访问,使用[],从0开始,0表示第一项,使用[]访问的时候需要注意:

  • 矩阵是列主序的
  • []必须是整型字面值或者const整型或者循环索引或者三者的组合表达式

运算

如果一个矢量和一个数值进行运算,结果是该数值和矢量的每个分量进行运算
如果一个矩阵和一个数值进行运算,结果是该数值和矩阵的每个分量进行运算

结构体

GLSL使用如下方式定义一个结构体:

struct light
{vec4 color;vec3 position;
};
light l1;
light l2;

使用点运算符访问结构体的成员。

数组

GLSL中可以使用数组,但是只可以使用一维数组
以下是数组的声明方式:

float floatArray[4];
vec4 vec4Array[3];

数组的长度必须是大于0的整型常量表达式:

  • 整型字面值
  • 用const限定符修饰的全局变量或者局部变量
  • 由前面两条组成的表达式

注意:在使用数组的时候,数组的索引只可以是整型常量表达式或者uniform变量。
注意:数组不可以在声明的时候直接初始化,必须显示的对每个元素进行初始化。

采样器

GLSL支持一种内置类型-采样器,我们只能通过采样器来获取纹理的数据。
GLSL ES1.0支持两种采样器类型:

  • sampler2D:二维纹理贴图
  • samplerCube:三维纹理贴图

采样器只能是uniform变量

我们通过GLSL提供的内置函数来从采样器中访问纹理数据,内置函数有两类,可以参考文章WebGL 1.0 内置函数

唯一能赋值给采样器变量的就是纹理单元编号,而且你必须使用WebGL方法

gl.uniform1i(u_Sampler, 纹理单元编号);

for循环

GLSL中可以使用for循环,和C语言很像,但是有些限制:

  • 循环变量只能有一个
  • 循环变量只能是int或者float
  • 循环变量只能和整型常量做比较
    有些时候,循环变量的比较对象我们可能期望是一个uniform传递过来的动态值。这个时候直接进行比较是不可以的,一种处理的办法是给一个足够大的比较值,然后在循环体内部判断循环变量和uniform变量的大小
  • 在循环体内,循环变量不可以被赋值

discard

discard只能在片元着色器使用,表示放弃当前片元的处理。

函数

GLSL的函数和C语言类似,如果我们在函数定义前就调用了函数,需要先对函数进行声明。

对于函数的参数,我们可以为参数指定限定词,以控制参数的行为。
函数参数的限定词有下面几种:

  • in:这是默认的限定词。值传递,函数内部修改参数的值不会影响传入的值
  • const in:也是值传递,但是函数内部不可以修改该值
  • out:引用传递,类似于C语言的指针或者C++的引用,内部修改会影响传入参数的值。
  • inout:和out一样也是引用传递,但是和out不同之处为out不应该对传入的值抱有期待,out主要为了传递出函数内部的值。而inout表明该参数既要被函数使用,也要被函数修改。

存储限定符

GLSL中的存储限定符有四种:

  • attribute
  • uniform
  • varying
  • const

const

表明当前变量不可以被修改,是一个常量
const变量定义时就需要赋值。

attribute

  • attribute变量只能出现在顶点着色器
  • attribute只能声明为全局变量
  • 在GLSL ES1.0中,attribute只能是float、vec2、vec3、vec4、mat2、mat3、mat4
  • 可以通过访问内置的全局变量gl_MaxVertexAttribs来获取attribute变量支持的数目,对于WebGL环境,最小为8

attribute表示逐顶点数据,应该传递顶点独有的属性数据,对于所有顶点共有的属性,应该使用uniform

uniform

  • uniform变量在顶点着色器和片元着色器中都可以使用
  • uniform只能声明为全局变量
  • uniform变量是只读的
  • 对于GLSL ES1.0,uniform不能声明为数组或者结构
  • 如果在顶点着色器和片元着色器声明了同名的uniform变量,该变量会被两个着色器共享。
  • 可以通过访问内置的全局变量gl_MaxVertexUniformVectors获取顶点着色器支持的uniform变量数量,通过访问内置的全局变量gl_MaxFragmentUniformVectors获片元着色器支持的uniform变量数量,对于WebGL环境,gl_MaxVertexUniformVectors最小为128,gl_MaxFragmentUniformVectors最小为16

varying

  • varying的目的是从顶点着色器传递数据到片元着色器。
  • varying成对出现,并且在顶点着色器和片元着色器中的名称和类型一致。
  • varying只能是全局变量
  • varying的类型和attribute一致

varying的中文翻译是变化的意思,既然为了传递数据,为什么用这么个名字呢?
原因就是我们在片元着色器中看到的varying变量虽然和顶点着色器中的名称和类型一致,但数据已经不一样了,看下面的代码:

// 顶点着色器
attribute vec2 a_Position;
attribute vec3 a_Color;
varying vec3 v_Color;
void main() {v_Color = a_Color;gl_Position = vec4(a_Position.x,a_Position.y,0.0,1.0);
}`;// 片元着色器
varying vec3 v_Color;
void main()
{gl_FragColor = vec4(v_Color,1.0);
}	

我们过一下其中的过程:

  1. 顶点着色器将每个顶点的颜色赋值给v_Color,如果有100个顶点,就有100个v_Color值
  2. 从顶点着色器到片元着色器的过程中,发生了光栅话,就是说在这个过程中,根据绘制的图形,会对v_Color进行插值
  3. 片元着色器中的v_Color是每个片元插值后的值。所以,采用了varying这个名称来标记光栅话的过程

从上面的解释可以看出,一般而言,varying都是针对于attribute变量的传递,所以,varying变量的数据类型和attribute变量是一致的。

可以通过访问内置的全局变量gl_MaxVaryingVectors获取着色器支持的varying变量数量,对于WebGL环境,gl_MaxVaryingVectors最小为8

最后,给出一张不同限定符数据在GPU中的传递图
在这里插入图片描述

精度限定符

定义

GLSL ES 新引入了精度限定符,目的是帮助着色器程序提高运行效率,削减内存开支。 顾名思义,精度限定符用来表示每种数据具有的精度 (比特数)。简而言之,高精度的程序需要更大的开销 (包括更大的内存和更久的计算时间),而低精度的程序需要的开销则小得多。使用精度限定符,你就能精细地控制程序在效果和性能间的平衡。

作用

精度限定符有两个作用:

  • 对于浮点数和采样器,精度限定符限制了精度和取值范围
  • 对于整型数据,精度限定符限制了取值范围

三种精度类型

因为我们使用采样器的时候,传递的也是浮点纹理坐标,所以我们总结一下不同的精度限定符对float和int的影响:

  • highp:高精度,顶点着色器的最低精度
    • 对于float,取值范围为 ( − 2 62 , 2 62 ) (-2^{62},2^{62}) (262,262),精度范围 2 − 16 2^{-16} 216
    • 对于int,取值范围为 ( − 2 16 , 2 16 ) (-2^{16},2^{16}) (216,216)
  • mediump:中精度,片元着色器的最低精度
    • 对于float,取值范围为 ( − 2 14 , 2 14 ) (-2^{14},2^{14}) (214,214),精度范围 2 − 10 2^{-10} 210
    • 对于int,取值范围为 ( − 2 10 , 2 10 ) (-2^{10},2^{10}) (210,210)
  • lowp:低精度
    • 对于float,取值范围为 ( − 2 , 2 ) (-2,2) (2,2),精度范围 2 − 8 2^{-8} 28
    • 对于int,取值范围为 ( − 2 8 , 2 8 ) (-2^{8},2^{8}) (28,28)

实际上,对于现在的机器,大部分的值和上面的默认值不一样,
我们可以使用下面的js方法获取不同精度的描述信息:

getShaderPrecisionFormat(shaderType, precisionType)
  • shaderType:表示着色器类型,可以是gl.FRAGMENT_SHADER或者gl.VERTEX_SHADER
  • precisionType:要查询的精度限定符类型,可以是:
    • gl.LOW_FLOAT
    • gl.MEDIUM_FLOAT
    • gl.HIGH_FLOAT
    • gl.LOW_INT
    • gl.MEDIUM_INT
    • gl.HIGH_INT
  • 返回值:如果成功,返回WebGLShaderPrecisionFormat对象的实例,如果失败,返回null,下面是一个具体的例子:
// 返回对象有三个值,表示精度和取值范围,一看就能明白
// 精度precision: 23
// rangeMax: 127
// rangeMin: 127
var precisionFormat = gl.getShaderPrecisionFormat(gl.VERTEX_SHADER,gl.MEDIUM_FLOAT);

对变量使用精度限定符有两种方式:

  • 直接在变量定义的前面添加精度限定符highp、mediump或者lowp
  • 给指定类型统一设置精度限定符
// 给float类型统一设置mediump
precision mediump float;// 给变量单独设置精度限定
mediump float a;
highp vec4 position;
lowp vec3 color;

默认值

  • 对于采样器,默认精度值都是lowp
  • 对于顶点着色器,int和float默认精度值都是highp
  • 对于片元着色器,int的默认精度值是mediump
  • 对于片元着色器,float没有默认精度值,所以我们需要在片元着色器的最前边设置float的默认精度,不然会导致编译错误。
    precision mediump float;
    

预处理

GLSL ES支持预处理,所谓的预处理就是在代码编译之前的处理过程

常用预处理指令

#if 条件表达式如果条件表达式为真,执行这里
#endif#ifdef 某宏如果定义了某宏,执行这里
#endif#ifndef 某宏如果没有定义某宏,执行这里
#endif// 定义宏
#define 宏名 宏内容// 取消定义宏
#undef 宏名// 使用#else
#define NUM 100
#if NUM==100如果NUM等于100,执行这里
#else否则执行这里
#endif

内置宏定义

  • GL_ES:在OpenGL ES 2.0中定义为1
  • GL_FRAGMENT_PRECISION_HIGH:片元着色器是否支持highp

可以使用下面的方式对片元着色器的float进行精度设置

#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#endif

设置版本

可以在着色器的顶部设置WEBGL的版本号

// 100表示设置WEBGL 1.00
#version 100

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/672165.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 动态显示数据。

界面显示动态的数据。 from time import sleep import serialimport tkinter as tklis[1,10,40] # 打开串行端口 ser serial.Serial(COM3, 9600) # 9600为波特率,根据实际情况进行调整# 创建窗口和画布 window tk.Tk() canvas tk.Canvas(window, width400, heig…

高阶滤波器

一阶后向差分:s(1-z^(-1))/T dx/dt[x(k)-x(k-1)]/T[x(k)-x(k)z^(-1)]/Tx(k)*(1-z^(-1))/T 一阶前向差分:s(z-1)/T dx/dt[x(k1)-x(k)]/T[z*x(k)-x(k)]/Tx(k)*(z-1)/T 双线性差分:s(2/T)*(1-z…

通过 docker-compose 部署 Flink

概要 通过 docker-compose 以 Session Mode 部署 flink 前置依赖 Docker、docker-composeflink 客户端docker-compose.yml version: "2.2" services:jobmanager:image: flink:1.17.2ports:- "8081:8081"command: jobmanagervolumes:- ${PWD}/checkpoin…

【大模型上下文长度扩展】FlashAttention:高效注意力计算的新纪元

FlashAttention:高效注意力计算的新纪元 核心思想核心操作融合,减少高内存读写成本分块计算(Tiling),避免存储一次性整个矩阵块稀疏注意力,处理长序列时的效率问题利用快速 SRAM,处理内存与计算…

【大模型上下文长度扩展】LongQLoRA:单GPU(V100)环境下的语言模型优化方案

LongQLoRA 核心问题子问题1: 预定义的上下文长度限制子问题2: 训练资源的需求高子问题3: 保持模型性能分析不足 LongQLoRA方法拆解子问题1: 上下文长度限制子问题2: 高GPU内存需求子问题3: 精确量化导致的性能损失分析不足效果 论文:https://arxiv.org/pdf/2311.048…

docker镜像结构

# 基础镜像 FROM openjdk:11.0-jre-buster # 设定时区 ENV TZAsia/Shanghai RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone # 拷贝jar包 COPY docker-demo.jar /app.jar # 入口 ENTRYPOINT ["java", "-jar"…

游泳耳机推荐性价比排行榜,四大高性价比游泳耳机推荐

随着运动健康意识的提高,越来越多的朋友选择在游泳馆进行锻炼。然而,在水中享受音乐并非易事,这就需要一款真正防水的耳机。尽管市面上有许多声称具备防水功能的耳机产品,但实际使用中往往难以达到理想的防水效果。为了帮助大家找…

之前看过的前序遍历的线索二叉树感觉写的有点问题 这里更新一下我的思路

前序线索化 #include<iostream> using namespace std;typedef int datatype; typedef struct BitNode {datatype Data;struct BitNode* leftchild;struct BitNode* rightchild;int lefttag;int righttag; }Node; #pragma region 前序线索化递归遍历 Node* previous NUL…

maven依赖报错处理(或者maven怎么刷新都下载不了依赖)

maven依赖报错&#xff0c;或者不报错&#xff0c;但是怎么刷新maven都没反应&#xff0c;可以试一下以下操作 当下载jar的时候&#xff0c;如果断网&#xff0c;或者连接超时的时候&#xff0c;会自动在文件夹中创建一个名为*lastupdate的文件&#xff0c;当有了这个文件之后…

网络工程师专属春节对联,不要太真实了!

中午好&#xff0c;我的网工朋友。 都放假了没&#xff1f;龙年将至&#xff0c;都有啥新年计划&#xff1f; 过年&#xff0c;讲究的就是一个热闹&#xff0c;可以暂时告别辛苦的一年&#xff0c;重新整装出发。 热闹可少不了春联啊&#xff0c;红红火火又一年&#xff0c;…

Vue源码系列讲解——虚拟DOM篇【一】(Vue中的虚拟DOM)

目录 1. 前言 2. 虚拟DOM简介 2.1什么是虚拟DOM&#xff1f; 2.2为什么要有虚拟DOM&#xff1f; 3. Vue中的虚拟DOM 3.1 VNode类 3.2 VNode的类型 3.2.1 注释节点 3.2.2 文本节点 3.2.3 克隆节点 3.2.4 元素节点 3.2.5 组件节点 3.2.6 函数式组件节点 3.2.7 小结 3…

OpenCV-31 获得形态学卷积核

OpenCV提供了获取卷积核的API&#xff0c;不需要我们手动创建卷积核。 通过下面API---getStructuringElement(shape&#xff0c;ksize&#xff0c;[, anchor]) shape是指卷积核的型状&#xff0c;注意不是指长宽&#xff0c;是指卷积核中1形成的形状。MORPH_RECT 卷积核中的1…

(三)elasticsearch 源码之启动流程分析

https://www.cnblogs.com/darcy-yuan/p/17007635.html 1.前面我们在《&#xff08;一&#xff09;elasticsearch 编译和启动》和 《&#xff08;二&#xff09;elasticsearch 源码目录 》简单了解下es&#xff08;elasticsearch&#xff0c;下同&#xff09;&#xff0c;现在我…

SPSS基础操作:对数据进行加权处理

对数据进行加权处理是我们使用SPSS提供某些分析方法的重要前提。对数据进行加权后&#xff0c;当前的权重将被保存在数据中。当进行相应的分析时&#xff0c;用户无须再次进行加权操作。本节以对广告的效果观测为例&#xff0c;讲解数据的加权操作。本例给出了消费者购买行为与…

Arthas使用教程—— 阿里开源线上监控诊断产品

文章目录 1 简介2背景3 图形界面工具 arthas 阿里开源3.1 &#xff1a;启动 arthas3.2 help :查看arthas所有命令3.3 查看 dashboard3.4 thread 列出当前进程所有线程占用CPU和内存情况3.5 jvm 查看该进程的各项参数 &#xff08;类比 jinfo&#xff09;3.6 通过 jad 来反编译 …

端口扫描神器:御剑 保姆级教程(附链接)

一、介绍 御剑&#xff08;YooScan&#xff09;是一款网络安全工具&#xff0c;主要用于进行端口扫描。它具有直观的用户界面&#xff0c;方便用户进行端口扫描和信息收集。以下是御剑端口扫描工具的一些主要特点和功能&#xff1a; 图形用户界面&#xff1a; 御剑提供直观的图…

告别mPDF迎来TCPDF和中文打印遇到的问题

mPDF是一个用PHP编写的开源PDF生成库。它最初由Claus Holler创建&#xff0c;于2004年发布。原来用开源软件打印中文没有问题&#xff0c;最近发现新的软件包中mPDF被TCPDF代替了&#xff0c;当然如果只用西文的PDF是没有发现问题&#xff0c;但要打印中文就有点抓瞎了如图1&am…

我的PyTorch模型比内存还大,怎么训练呀?

原文&#xff1a;我的PyTorch模型比内存还大&#xff0c;怎么训练呀&#xff1f; - 知乎 看了一篇比较老&#xff08;21年4月文章&#xff09;的不大可能训练优化方案&#xff0c;保存起来以后研究一下。 随着深度学习的飞速发展&#xff0c;模型越来越臃肿&#xff0c;哦不&a…

vue element 组件 form深层 :prop 验证失效问题解决

此图源自官网 借鉴。 当我们简单单层验证的时候发现是没有问题的&#xff0c;但是有的时候可能会涉及到深层prop&#xff0c;发现在去绑定的时候就不生效了。例如我们在form单里面循环验证&#xff0c;在去循环数据验证。 就如下图的写法了 :prop"pumplist. i .device…

Redis缓存设计及优化

缓存设计 缓存穿透 缓存穿透是指查询一个根本不存在的数据&#xff0c; 缓存层和存储层都不会命中&#xff0c; 通常出于容错的考虑&#xff0c; 如果从存储层查不到数据则不写入缓存层。 缓存穿透将导致不存在的数据每次请求都要到存储层去查询&#xff0c; 失去了缓存保护后…