kubernetes持久化存储卷

kubernetes持久化存储卷

  • kubernetes持久化存储卷
  • 一、存储卷介绍
  • 二、存储卷的分类
  • 三、存储卷的选择
  • 四、本地存储卷之emptyDir
  • 五、本地存储卷之 hostPath
  • 六、网络存储卷之nfs
  • 七、PV(持久存储卷)与PVC(持久存储卷声明)
    • 7.1 认识pv与pvc
    • 7.2 pv与pvc之间的关系
    • 7.3 实现nfs类型pv与pvc
    • 7.4 subpath使用
  • 八、存储的动态供给
    • 8.1 什么是动态供给
    • 8.2 使用NFS文件系统创建存储动态供给

kubernetes持久化存储卷

一、存储卷介绍

pod有生命周期,生命周期结束后 pod 里的数据会消失(如配置文件,业务数据等)。

解决: 我们需要将数据与pod分离,将数据放在专门的存储卷上

pod在k8s集群的节点中是可以调度的, 如果pod挂了被调度到另一个节点,那么数据和pod的联系会中断。

解决: 所以我们需要与集群节点分离的存储系统才能实现数据持久化

简单来说: volume提供了在容器上挂载外部存储的能力

二、存储卷的分类

kubernetes 支持的存储卷类型非常丰富,使用下面的命令查看:

# kubectl explain pod.spec.volumes

或者参考: https://kubernetes.io/docs/concepts/storage/

kubernetes支持的存储卷列表如下:

  • awsElasticBlockStore
  • azureDisk
  • azureFile
  • cephfs
  • cinder
  • configMap
  • csi
  • downwardAPI
  • emptyDir
  • fc (fibre channel)
  • flexVolume
  • flocker
  • gcePersistentDisk
  • gitRepo (deprecated)
  • glusterfs
  • hostPath
  • iscsi
  • local
  • nfs
  • persistentVolumeClaim
  • projected
  • portworxVolume
  • quobyte
  • rbd
  • scaleIO
  • secret
  • storageos
  • vsphereVolume

我们将上面的存储卷列表进行简单的分类:

  • 本地存储卷
    • emptyDir pod删除,数据也会被清除,用于数据的临时存储
    • hostPath 宿主机目录映射(本地存储卷)
  • 网络存储卷
    • NAS类 nfs等
    • SAN类 iscsi,FC等
    • 分布式存储 glusterfs,cephfs,rbd,cinder等
    • 云存储 aws,azurefile等

三、存储卷的选择

市面上的存储产品种类繁多,但按应用角度主要分为三类:

  • 文件存储 如:nfs,glusterfs,cephfs等
    • 优点: 数据共享(多pod挂载可以同读同写)
    • 缺点: 性能较差
  • 块存储 如: iscsi,rbd等
    • 优点: 性能相对于文件存储好
    • 缺点: 不能实现数据共享(部分)
  • 对象存储 如: ceph 对象存储
    • 优点: 性能好,数据共享
    • 缺点: 使用方式特殊,支持较少

面对kubernetes支持的形形色色的存储卷,如何选择成了难题。在选择存储时,我们要抓住核心需求:

  • 数据是否需要持久性
  • 数据可靠性 如存储集群节点是否有单点故障,数据是否有副本等
  • 性能
  • 扩展性 如是否能方便扩容,应对数据增长的需求
  • 运维难度 存储的运维难度是比较高的,尽量选择稳定的开源方案或商业产品
  • 成本

总之,存储的选择是需要考虑很多因素的,熟悉各类存储产品,了解它们的优缺点,结合自身需求才能选择合适自己的。

四、本地存储卷之emptyDir

  • 应用场景
    实现pod内容器之间数据共享

  • 特点
    随着pod被删除,该卷也会被删除

  1. 创建yaml文件
[root@k8s-master1 ~]# vim volume-emptydir.yml
apiVersion: v1
kind: Pod
metadata:name: volume-emptydir
spec:containers:- name: writeimage: centosimagePullPolicy: IfNotPresentcommand: ["bash","-c","echo haha > /data/1.txt ; sleep 6000"]volumeMounts:- name: datamountPath: /data- name: readimage: centosimagePullPolicy: IfNotPresentcommand: ["bash","-c","cat /data/1.txt; sleep 6000"]volumeMounts:- name: datamountPath: /data volumes:- name: dataemptyDir: {}
  1. 基于yaml文件创建pod
[root@k8s-master1 ~]# kubectl apply -f volume-emptydir.yml
pod/volume-emptydir created
  1. 查看pod启动情况
[root@k8s-master1 ~]# kubectl get pods |grep volume-emptydir
NAME                               READY   STATUS    RESTARTS   AGE
volume-emptydir                    2/2     Running   0          15s
  1. 查看pod描述信息
[root@k8s-master1 ~]# kubectl describe pod volume-emptydir | tail -10
Events:Type    Reason     Age   From               Message----    ------     ----  ----               -------Normal  Scheduled  50s   default-scheduler  Successfully assigned default/volume-emptydir to k8s-worker1Normal  Pulling    50s   kubelet            Pulling image "centos:centos7"Normal  Pulled     28s   kubelet            Successfully pulled image "centos:centos7" in 21.544912361sNormal  Created    28s   kubelet            Created container writeNormal  Started    28s   kubelet            Started container writeNormal  Pulled     28s   kubelet            Container image "centos:centos7" already present on machineNormal  Created    28s   kubelet            Created container readNormal  Started    28s   kubelet            Started container read
  1. 验证
[root@k8s-master1 ~]# kubectl logs volume-emptydir -c write
[root@k8s-master1 ~]# kubectl logs volume-emptydir -c read
haha

五、本地存储卷之 hostPath

  • 应用场景
    pod内与集群节点目录映射(pod中容器想访问节点上数据,例如监控,只有监控访问到节点主机文件才能知道集群节点主机状态)

  • 缺点
    如果集群节点挂掉,控制器在另一个集群节点拉起容器,数据就会变成另一台集群节点主机的了(无法实现数据共享)

  1. 创建yaml文件
[root@k8s-master1 ~]# vim volume-hostpath.yml
apiVersion: v1
kind: Pod
metadata:name: volume-hostpath
spec:containers:- name: busyboximage: busyboximagePullPolicy: IfNotPresentcommand: ["/bin/sh","-c","echo haha > /data/1.txt ; sleep 600"]volumeMounts:- name: datamountPath: /datavolumes:- name: datahostPath:path: /opttype: Directory
  1. 基于yaml文件创建pod
[root@k8s-master1 ~]# kubectl apply  -f volume-hostpath.yml
pod/volume-hostpath created[root@k8s-master1 ~]# kubectl get pods -o wide |grep volume-hostpath
volume-hostpath     1/1   Running   0    29s     10.224.194.120   k8s-worker1   <none>     <none>
可以看到pod是在k8s-worker1节点上
  1. 验证pod所在机器上的挂载文件
[root@k8s-worker1 ~]# cat /opt/1.txt
haha

六、网络存储卷之nfs

  1. 搭建nfs服务器
[root@nfsserver ~]# mkdir -p /data/nfs
[root@nfsserver ~]# vim /etc/exports
/data/nfs       *(rw,no_root_squash,sync)
[root@nfsserver ~]# systemctl restart nfs-server
[root@nfsserver ~]# systemctl enable nfs-server
  1. 所有node节点安装nfs客户端相关软件包
[root@k8s-worker1 ~]# yum install nfs-utils -y
[root@k8s-worker2 ~]# yum install nfs-utils -y
  1. 验证nfs可用性
[root@node1 ~]# showmount -e 192.168.10.129
Export list for 192.168.10.129:
/data/nfs *
[root@node2 ~]# showmount -e 192.168.10.129
Export list for 192.168.10.129:
/data/nfs *
  1. master节点上创建yaml文件
[root@k8s-master1 ~]# vim volume-nfs.yml
apiVersion: apps/v1
kind: Deployment
metadata:name: volume-nfs
spec:replicas: 2selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginx:1.15-alpineimagePullPolicy: IfNotPresentvolumeMounts:- name: documentrootmountPath: /usr/share/nginx/htmlports:- containerPort: 80volumes:- name: documentrootnfs:server: 192.168.10.129path: /data/nfs
  1. 应用yaml创建
[root@k8s-master1 ~]#  kubectl apply -f volume-nfs.yml
deployment.apps/nginx-deployment created
  1. 在nfs服务器共享目录中创建验证文件
[root@nfsserver ~]# echo "volume-nfs" > /data/nfs/index.html
  1. 验证pod
[root@k8s-master1 ~]# kubectl get pod |grep volume-nfs
volume-nfs-649d848b57-qg4bz   1/1     Running   0          10s
volume-nfs-649d848b57-wrnpn   1/1     Running   0          10s
[root@k8s-master1 ~]# kubectl exec -it volume-nfs-649d848b57-qg4bz -- /bin/sh
/ # ls /usr/share/nginx/html/
index.html
/ # cat /usr/share/nginx/html/index.html
volume-nfs										# 文件内容与nfs服务器上创建的一致
/ # exit
[root@k8s-master1 ~]# kubectl exec -it volume-nfs-649d848b57-wrnpn -- /bin/sh
/ # ls /usr/share/nginx/html/
index.html
/ # cat /usr/share/nginx/html/index.html
volume-nfs										# 文件内容与nfs服务器上创建的一致
/ # exit

七、PV(持久存储卷)与PVC(持久存储卷声明)

7.1 认识pv与pvc

kubernetes存储卷的分类太丰富了,每种类型都要写相应的接口与参数才行,这就让维护与管理难度加大。

persistenvolume(PV) 是配置好的一段存储(可以是任意类型的存储卷)

  • 也就是说将网络存储共享出来,配置定义成PV。

PersistentVolumeClaim(PVC)是用户pod使用PV的申请请求。

  • 用户不需要关心具体的volume实现细节,只需要关心使用需求。

7.2 pv与pvc之间的关系

  • pv提供存储资源(生产者)

  • pvc使用存储资源(消费者)

  • 使用pvc绑定pv

在这里插入图片描述

7.3 实现nfs类型pv与pvc

  1. 编写创建pv的YAML文件
[root@k8s-master1 ~]# vim pv-nfs.yml
apiVersion: v1
kind: PersistentVolume						# 类型为PersistentVolume(pv)
metadata:		name: pv-nfs								# 名称
spec:capacity:storage: 1Gi							# 大小accessModes:- ReadWriteMany							# 访问模式nfs:path: /data/nfs							# nfs共享目录server: 192.168.10.129					# nfs服务器IP

访问模式有3种 参考 链接

  • ReadWriteOnce 单节点读写挂载
  • ReadOnlyMany 多节点只读挂载
  • ReadWriteMany 多节点读写挂载

cephfs 存储卷3种类型都支持,我们要实现多个nginx跨节点之间的数据共享,所以选择ReadWriteMany模式。

  1. 创建pv并验证
[root@k8s-master1 ~]# kubectl apply -f pv-nfs.yml
persistentvolume/pv-nfs created
[root@k8s-master1 ~]# kubectl get pv
NAME     CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM   STORAGECLASS   REASON   AGE
pv-nfs   1Gi        RWX            Retain           Available                                   81s

说明:

  • RWX为ReadWriteMany的简写
  • Retain是回收策略
    • Retain表示需要不使用了需要手动回收
    • 参考 回收策略
  1. 编写创建pvc的YAML文件
[root@k8s-master1 ~]# vim pvc-nfs.yml
apiVersion: v1
kind: PersistentVolumeClaim				# 类型为PersistentVolumeClaim(pvc)
metadata:name: pvc-nfs							# pvc的名称
spec:accessModes:- ReadWriteMany						# 访问模式resources:requests:storage: 1Gi						# 大小要与pv的大小保持一致
  1. 创建pvc并验证
[root@k8s-master1 ~]# kubectl apply -f pvc-nfs.yml
persistentvolumeclaim/pvc-nfs created
[root@k8s-master1 ~]# kubectl get pvc
NAME      STATUS   VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE
pvc-nfs   Bound    pv-nfs   1Gi        RWX                           38s

注意: STATUS 必须为Bound状态 (Bound状态表示pvc与pv绑定OK)

  1. 编写deployment的YMAL
[root@k8s-master1 ~]# vim deploy-nginx-nfs.yml
apiVersion: apps/v1
kind: Deployment
metadata:name: deploy-nginx-nfs
spec:replicas: 2selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginx:1.15-alpineimagePullPolicy: IfNotPresentports:- containerPort: 80volumeMounts:- name: wwwmountPath: /usr/share/nginx/htmlvolumes:- name: wwwpersistentVolumeClaim:claimName: pvc-nfs
  1. 应用YAML创建deploment
[root@k8s-master1 ~]# kubectl apply -f deploy-nginx-nfs.yml
deployment.apps/deploy-nginx-nfs created
  1. 验证pod
[root@k8s-master1 ~]# kubectl get pod |grep deploy-nginx-nfs
deploy-nginx-nfs-6f9bc4546c-gbzcl   1/1     Running   0          1m46s
deploy-nginx-nfs-6f9bc4546c-hp4cv   1/1     Running   0          1m46s
  1. 验证pod内卷的数据
[root@k8s-master1 ~]# kubectl exec -it deploy-nginx-nfs-6f9bc4546c-gbzcl -- /bin/sh
/ # ls /usr/share/nginx/html/
index.html
/ # cat /usr/share/nginx/html/index.html
volume-nfs
/ # exit[root@k8s-master1 ~]# kubectl exec -it deploy-nginx-nfs-6f9bc4546c-hp4cv -- /bin/sh
/ # ls /usr/share/nginx/html/
index.html
/ # cat /usr/share/nginx/html/index.html
volume-nfs
/ # exit

7.4 subpath使用

subpath 是指可以把相同目录下不同子目录挂载到容器中不同的目录中使用的方法。以下通过案例演示:

编辑文件
# vim 01_create_pod.yaml编辑后查看,保持内容一致即可
# cat 01_create_pod.yaml
apiVersion: v1
kind: Pod
metadata:name: pod1
spec:containers:- name: c1image: busyboxcommand: ["/bin/sleep","100000"]volumeMounts:- name: datamountPath: /opt/data1subPath: data1- name: datamountPath: /opt/data2subPath: data2volumes:- name: datapersistentVolumeClaim:claimName: pvc-nfs执行文件,创建pod
# kubectl apply -f 01_create_pod.yaml
pod/pod1 created
编辑文件
# vim 02_create_pvc.yaml查看编辑后文件,保持内容一致即可
# cat 02_create_pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim                             # 类型为PersistentVolumeClaim(pvc)
metadata:name: pvc-nfs                                                 # pvc的名称
spec:accessModes:- ReadWriteMany                                             # 访问模式resources:requests:storage: 1Gi                                              # 大小要与pv的大小保持一致
执行文件,创建pvc
# kubectl apply  -f 02_create_pvc.yaml
persistentvolumeclaim/pvc-nfs created
编辑文件
# vim 03_create_pv_nfs.yaml查看编辑后文件,保持内容一致,注意修改nfs服务器及其共享的目录
# cat 03_create_pv_nfs.yaml
apiVersion: v1
kind: PersistentVolume                                           # 类型为PersistentVolume(pv)
metadata:name: pv-nfs                                                   # 名称
spec:capacity:storage: 1Gi                                                 # 大小accessModes:- ReadWriteMany                                              # 访问模式nfs:path: /sdb                                                   # nfs共享目录server: 192.168.10.214
执行文件,创建pv
# kubectl apply -f 03_create_pv_nfs.yaml
persistentvolume/pv-nfs created在nfs服务器查看pod中目录是否自动添加到nfs服务器/sdb目录中
[root@nfsserver ~]# ls /sdb
data1  data2

八、存储的动态供给

8.1 什么是动态供给

每次使用存储要先创建pv, 再创建pvc,真累!所以我们可以实现使用存储的动态供给特性。

  • 静态存储需要用户申请PVC时保证容量和读写类型与预置PV的容量及读写类型完全匹配,而动态存储则无需如此。
  • 管理员无需预先创建大量的PV作为存储资源

Kubernetes从1.4 版起引入了一个新的资源对象 StorageClass,可用于将存储资源定义为具有显著特性的类(Class)而不是具体的PV。用户通过PVC直接向意向的类别发出申请,匹配由管理员事先创建的PV,或者由其按需为用户动态创建PV,这样就免去了需要先创建PV的过程。

8.2 使用NFS文件系统创建存储动态供给

PV对存储系统的支持可通过其插件来实现,目前,Kubernetes支持如下类型的插件。

官方地址:https://kubernetes.io/docs/concepts/storage/storage-classes/

官方插件是不支持NFS动态供给的,但是我们可以用第三方的插件来实现

第三方插件地址: https://github.com/kubernetes-retired/external-storage

  1. 下载并创建storageclass
[root@k8s-master1 ~]# wget https://raw.githubusercontent.com/kubernetes-sigs/nfs-subdir-external-provisioner/master/deploy/class.yaml
[root@k8s-master1 ~]# mv class.yaml storageclass-nfs.yml[root@k8s-master1 ~]# cat storageclass-nfs.yml
apiVersion: storage.k8s.io/v1
kind: StorageClass				# 类型
metadata:name: nfs-client				# 名称,要使用就需要调用此名称
provisioner: k8s-sigs.io/nfs-subdir-external-provisioner 	# 动态供给插件
parameters:archiveOnDelete: "false"		# 删除数据时是否存档,false表示不存档,true表示存档
[root@k8s-master1 ~]# kubectl apply -f storageclass-nfs.yml
storageclass.storage.k8s.io/managed-nfs-storage created[root@k8s-master1 ~]# kubectl get storageclass
NAME         PROVISIONER                                   RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE
nfs-client   k8s-sigs.io/nfs-subdir-external-provisioner   Delete          Immediate           false                  10s# RECLAIMPOLICY pv回收策略,pod或pvc被删除后,pv是否删除还是保留。
# VOLUMEBINDINGMODE Immediate 模式下PVC与PV立即绑定,主要是不等待相关Pod调度完成,不关心其运行节点,直接完成绑定。相反的 WaitForFirstConsumer模式下需要等待Pod调度完成后进行PV绑定。
# ALLOWVOLUMEEXPANSION pvc扩容
  1. 下载并创建rbac

因为storage自动创建pv需要经过kube-apiserver,所以需要授权。

[root@k8s-master1 ~]# wget https://raw.githubusercontent.com/kubernetes-sigs/nfs-subdir-external-provisioner/master/deploy/rbac.yaml
[root@k8s-master1 ~]# mv rbac.yaml storageclass-nfs-rbac.yaml[root@k8s-master1 ~]# cat storageclass-nfs-rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:name: nfs-client-provisioner# replace with namespace where provisioner is deployednamespace: default
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:name: nfs-client-provisioner-runner
rules:- apiGroups: [""]resources: ["persistentvolumes"]verbs: ["get", "list", "watch", "create", "delete"]- apiGroups: [""]resources: ["persistentvolumeclaims"]verbs: ["get", "list", "watch", "update"]- apiGroups: ["storage.k8s.io"]resources: ["storageclasses"]verbs: ["get", "list", "watch"]- apiGroups: [""]resources: ["events"]verbs: ["create", "update", "patch"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:name: run-nfs-client-provisioner
subjects:- kind: ServiceAccountname: nfs-client-provisioner# replace with namespace where provisioner is deployednamespace: default
roleRef:kind: ClusterRolename: nfs-client-provisioner-runnerapiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:name: leader-locking-nfs-client-provisioner# replace with namespace where provisioner is deployednamespace: default
rules:- apiGroups: [""]resources: ["endpoints"]verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:name: leader-locking-nfs-client-provisioner# replace with namespace where provisioner is deployednamespace: default
subjects:- kind: ServiceAccountname: nfs-client-provisioner# replace with namespace where provisioner is deployednamespace: default
roleRef:kind: Rolename: leader-locking-nfs-client-provisionerapiGroup: rbac.authorization.k8s.io
[root@k8s-master1 ~]# kubectl apply -f rbac.yaml
serviceaccount/nfs-client-provisioner created
clusterrole.rbac.authorization.k8s.io/nfs-client-provisioner-runner created
clusterrolebinding.rbac.authorization.k8s.io/run-nfs-client-provisioner created
role.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created
rolebinding.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created
  1. 创建动态供给的deployment
    需要一个deployment来专门实现pv与pvc的自动创建
[root@k8s-master1 ~]# vim deploy-nfs-client-provisioner.yml
apiVersion: apps/v1
kind: Deployment
metadata:name: nfs-client-provisioner
spec:replicas: 1strategy:type: Recreateselector:matchLabels:app: nfs-client-provisionertemplate:metadata:labels:app: nfs-client-provisionerspec:serviceAccount: nfs-client-provisionercontainers:- name: nfs-client-provisionerimage: registry.cn-beijing.aliyuncs.com/pylixm/nfs-subdir-external-provisioner:v4.0.0volumeMounts:- name: nfs-client-rootmountPath: /persistentvolumesenv:- name: PROVISIONER_NAMEvalue: k8s-sigs.io/nfs-subdir-external-provisioner- name: NFS_SERVERvalue: 192.168.10.129- name: NFS_PATHvalue: /data/nfsvolumes:- name: nfs-client-rootnfs:server: 192.168.10.129path: /data/nfs
[root@k8s-master1 ~]# kubectl apply -f deploy-nfs-client-provisioner.yml
deployment.apps/nfs-client-provisioner created[root@k8s-master1 ~]# kubectl get pods |grep nfs-client-provisioner
nfs-client-provisioner-5b5ddcd6c8-b6zbq   1/1     Running   0          34s
测试存储动态供给是否可用
# vim nginx-sc.yaml
---
apiVersion: v1
kind: Service
metadata:name: nginxlabels:app: nginx
spec:ports:- port: 80name: webclusterIP: Noneselector:app: nginx
---
apiVersion: apps/v1
kind: StatefulSet
metadata:name: web
spec:selector:matchLabels:app: nginxserviceName: "nginx"replicas: 2template:metadata:labels:app: nginxspec:imagePullSecrets:- name: huoban-harborterminationGracePeriodSeconds: 10containers:- name: nginximage: nginx:latestports:- containerPort: 80name: webvolumeMounts:- name: wwwmountPath: /usr/share/nginx/htmlvolumeClaimTemplates:- metadata:name: wwwspec:accessModes: [ "ReadWriteOnce" ]storageClassName: "nfs-client"resources:requests:storage: 1Gi
[root@k8s-master1 nfs]# kubectl get pods
NAME                                     READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-9c988bc46-pr55n   1/1     Running   0          95s
web-0                                    1/1     Running   0          95s
web-1                                    1/1     Running   0          61s[root@nfsserver ~]# ls /data/nfs/
default-www-web-0-pvc-c4f7aeb0-6ee9-447f-a893-821774b8d11f  default-www-web-1-pvc-8b8a4d3d-f75f-43af-8387-b7073d07ec01 

扩展:

批量下载文件:
# for file in class.yaml deployment.yaml rbac.yaml  ;
do wget https://raw.githubusercontent.com/kubernetes-incubator/external-storage/master/nfs-client/deploy/$file ; 
done

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/6706.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring MVC拦截器和跨域请求

一、拦截器简介 SpringMVC的拦截器&#xff08;Interceptor&#xff09;也是AOP思想的一种实现方式。它与Servlet的过滤器&#xff08;Filter&#xff09;功能类似&#xff0c;主要用于拦截用户的请求并做相应的处理&#xff0c;通常应用在权限验证、记录请求信息的日志、判断用…

EfficientNetV2: Smaller Models and Faster Training

EfficientNetV2: Smaller Models and Faster Training 1.Abstract 本文提出了一种训练速度快、参数量少、模型小的卷积神经网络EfficientNetV2。 训练采用了NAS感知技术与缩放技术对训练速度与参数数量进行联合优化。 NAS感知技术&#xff1a; 全名是神经架构搜索&#xff0…

quartus工具篇——ROM ip核

quartus工具篇——ROM ip核 1、ROM简介 FPGA中的ROM(Read-Only Memory)是一种只读存储器,主要用来存储固化的初始化配置数据。FPGA ROM的特性主要有: 预编程初始化 - ROM在FPGA编程时就已经写入了初始值,这些值在整个工作周期保持不变。初始化配置 - ROM通常用来存储FPGA的初…

Flutter的开发环境搭建-图解

前言&#xff1a;Flutter作为一个移动应用开发框架&#xff0c;具有许多优点和一些局限性。最大的优点就是-跨平台开发&#xff1a;Flutter可以在iOS和Android等多个平台上进行跨平台开发&#xff0c;使用一套代码编写应用程序&#xff0c;节省开发时间和成本。 Flutter可以编…

JVM运行时数据区——方法区、堆、栈的关系

方法区存储加载的字节码文件内的相关信息和运行时常量池&#xff0c;方法区可以看作是独立于Java堆的内存空间&#xff0c;方法区是在JVM启动时创建的&#xff0c;其内存的大小可以调整&#xff0c;是线程共享的&#xff0c;并且也会出现内存溢出的情况&#xff0c;也可存在垃圾…

2023JAVA 架构师面试 130 题含答案:JVM+spring+ 分布式 + 并发编程》...

此文包含 Java 面试的各个方面&#xff0c;史上最全&#xff0c;苦心整理最全 Java 面试题目整理包括基JVM算法数据库优化算法数据结构分布式并发编程缓存等&#xff0c;使用层面广&#xff0c;知识量大&#xff0c;涉及你的知识盲点。要想在面试者中出类拔萃就要比人付出更多的…

3.18 Bootstrap 列表组(List Group)

文章目录 Bootstrap 列表组&#xff08;List Group&#xff09;向列表组添加徽章向列表组添加链接向列表组添加自定义内容 Bootstrap 列表组&#xff08;List Group&#xff09; 本章我们将讲解列表组。列表组件用于以列表形式呈现复杂的和自定义的内容。创建一个基本的列表组的…

Debug Stable Diffusion webui

文章目录 SD前期预备一些惊喜TorchHijackForUnet Txt2Img 搭配 Lora 使用单独运行 txt2img.py获取所有资源代码地址参数sd model 主程序代码地址参数(同上)模型InferenceLORA应用重构并使用LORA模型用Lora重构后的网络 做 sampler后处理 以下内容是最近的学习笔记&#xff0c;如…

MySQL基础语法(DDL、DQL、DML、DCL)

目录 SQL通用语法以及分类 SQL通用语法 SQL语句的分类 数据库/表/列的命名规则 DDL语句 DDL设计的数据类型 数据库操作 表操作&#xff08;必须先进入到数据库&#xff09; DQL语句 DQL的执行顺序 基本查询 SELECT 条件查询 WHERE 分组查询 GROUP BY 排序查询 OR…

Python Flask构建微信小程序订餐系统 (十)

🔥 编辑会员信息 🔥 编辑会员信息可以通过点击会员列表操作,也可以点击会员信息详情点击进行操作 🔥 修改编程会员信息列表布局 🔥 修改 web/templates/member/index.html 文件,添加跳转到编辑会员信息的页面 web/templates/member/set.html 🔥 创建用于会员…

python机器学习(四)线性代数回顾、多元线性回归、多项式回归、标准方程法求解、线性回归案例

回顾线性代数 矩阵 矩阵可以理解为二维数组的另一种表现形式。A矩阵为三行两列的矩阵&#xff0c;B矩阵为两行三列的矩阵&#xff0c;可以通过下标来获取矩阵的元素&#xff0c;下标默认都是从0开始的。 A i j : A_{ij}: Aij​:表示第 i i i行&#xff0c;第 j j j列的元素。…

在虚拟机中安装anaconda和pytorch

首先我用的是VMware&#xff0c;ubuntu16.04. 首先建议安装anaconda,登录官网Free Download | Anaconda 下载完成后&#xff0c;来到安装文件目录处&#xff0c;打开终端&#xff0c; 然后在终端输入bash <anaconda文件名> 然后就一直enter和yes到底&#xff0c;直到安…

服务器中了Locked勒索病毒怎么解决,勒索病毒解密恢复方式与防护措施

服务器是企业重要数据存储和处理的关键设备&#xff0c;然而&#xff0c;众所周知&#xff0c;服务器系统并非完全免受网络攻击的。其中一种常见的威胁是勒索病毒&#xff0c;其中一种恶名昭彰的变种是Locked勒索病毒。Locked勒索病毒采用了对称AES与非对称RSA的加密形式&#…

曲线长度预测神经网络设计与实现

在本文中&#xff0c;我们使用深度神经网络 (DNN) 解决几何中的一个基本问题&#xff1a;曲线长度的计算。 我们从监督学习方法的示例中学习了几何属性。 由于最简单的几何对象是曲线&#xff0c;因此我们重点学习平面曲线的长度。 为此&#xff0c;重建了基本长度公理并建立了…

Microsoft发布用于 AutoML 算法和训练的 NNI v1.3

将传统的机器学习方法应用于现实世界的问题可能非常耗时。自动化机器学习 &#xff08;AutoML&#xff09; 旨在改变这种状况——通过对原始数据运行系统流程并选择从数据中提取最相关信息的模型&#xff0c;使构建和使用 ML 模型变得更加容易。 为了帮助用户以高效和自动的方…

【雕爷学编程】Arduino动手做(170)---LGT8F328P 开发板

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

【C++ 程序设计】第 1~9 章:常见知识点汇总

目录 一、C 语言简介 二、面向对象的基本概念 三、类和对象进阶 四、运算符重载 五、类的继承与派生 六、多态与虚函数 七、输入/输出流 八、文件操作 九、函数模板与类模板 一、C 语言简介 知识点名称内容C语言的发展简史★★1. C 语言是 C 语言的前身 &…

PyTorch深度学习实战(6)——神经网络性能优化技术

PyTorch深度学习实战&#xff08;6&#xff09;——神经网络性能优化技术 0. 前言1. 数据准备1.1 数据集分析1.2 数据集加载 2. 使用 PyTorch 训练神经网络2.1 神经网络训练流程2.2 PyTorch 神经网络训练 3. 缩放数据集4. 修改优化器5. 构建深层神经网络小结系列链接 0. 前言 …

C#之事件

目录 一、发布者和订阅者 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;有关事件的重要事项 &#xff08;三&#xff09;有关事件的私有委托需要了解的重要事项 二、源代码组件概览 三、声明事件 事件是成员 四、订阅事件 五、触发事件 六、标准事件的…

【Zerotier】通过docker自建PLANET服务器

在如今全球互联的时代&#xff0c;我们对于互联网的依赖程度越来越高。然而&#xff0c;传统的网络连接方式在某些情况下可能会受到一些限制&#xff0c;例如局域网的范围限制、防火墙的阻断或者设备所处的多层NAT等。但是&#xff0c;现在有一个名为ZeroTier的工具出现了&…