【机器学习】科学库使用手册第2篇:机器学习任务和工作流程(已分享,附代码)

本系列文章md笔记(已分享)主要讨论人工智能相关知识。主要内容包括,了解机器学习定义以及应用场景,掌握机器学习基础环境的安装和使用,掌握利用常用的科学计算库对数据进行展示、分析,学会使用jupyter notebook平台完成代码编写运行,应用Matplotlib的基本功能实现图形显示,应用Matplotlib实现多图显示,应用Matplotlib实现不同画图种类,学习Numpy运算速度上的优势,知道Numpy的数组内存块风格,了解Numpy与Pandas的不同,学习Pandas的使用,应用crosstab和pivot_table实现交叉表与透视表,应用Pandas实现数据的读取和存储,并且了解完整机器学习项目的流程。

全套笔记和代码自取在个人博客: https://gitee.com/yinuo112/Technology/tree/master/机器学习/机器学习(科学计算库)/1.md

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,33 子模块

机器学习概述

学习目标

  • 了解人工智能发展历程
  • 了解机器学习定义以及应用场景
  • 知道机器学习算法监督学习与无监督学习的区别
  • 知道监督学习中的分类、回归特点
  • 知道机器学习的开发流程

1.3 人工智能主要分支

学习目标

  • 了解人工智能的主要分支

1 主要分支介绍

通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:

  • 计算机视觉(CV)、

  • 自然语言处理(NLP)

    • 在 NLP 领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。
  • 机器人

1.1 分支一:计算机视觉

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。

当前阶段:

计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面)。

发展历史:

image-20190218130007824

1.2 分支二:语音识别

语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。

当前阶段:

语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了。

语音识别领域仍然面临着声纹识别和**「鸡尾酒会效应」**等一些特殊情况的难题。

现代语音识别系统严重依赖于云,在离线时可能就无法取得理想的工作效果。

发展历史:

  • 百度语音识别:
    • 距离小于1米,中文字准率97%+
    • 支持耳语、长语音、中英文混合及方言

image-20190218125823637

1.3 分支三:文本挖掘/分类

**这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。**其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

当前阶段:

我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。

文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。

发展历史:

1.4 分支四:机器翻译

机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。

当前阶段:

机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进入社会影响阶段。

在某些情况下,俚语和行话等内容的翻译会比较困难(受限词表问题)。

专业领域的机器翻译(比如医疗领域)表现通常不好

发展历史:

1.5 分支五:机器人

机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。

**机器人可以分成两大类:固定机器人和移动机器人。**固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。

当前阶段:

自上世纪「Robot」一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在 20 世纪 80 年代将这一领域带入了应用阶段。在安川电机、Fanuc、ABB、库卡等公司的努力下,我们认为进入 21 世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。

但是,法律法规和「机器人威胁论」可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资

发展历史

总的来说,人工智能领域的研究前沿正逐渐从搜索、知识和推理领域转向机器学习、深度学习、计算机视觉和机器人领域。

大多数早期技术至少已经处于应用阶段了,而且其中一些已经显现出了社会影响力。一些新开发的技术可能仍处于工程甚至研究阶段,但是我们可以看到不同阶段之间转移的速度变得越来越快。

2 小结

  • 人工智能主要分支【了解】

    • 计算机视觉
    • 语音识别
    • 文本挖掘/分类
    • 机器翻译
    • 机器人

1.4 机器学习工作流程

学习目标

  • 了解机器学习的定义
  • 知道机器学习的工作流程
  • 掌握获取到的数据集的特性

1 什么是机器学习

机器学习是从数据自动分析获得模型,并利用模型对未知数据进行预测。

image-20190222232402795

2 机器学习工作流程

  • 机器学习工作流程总结

    • 1.获取数据
    • 2.数据基本处理
    • 3.特征工程
    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤

2.1 获取到的数据集介绍

img

电影ç±"型分析

img

  • 数据简介

在数据集中一般:

  • 一行数据我们称为一个样本

  • 一列数据我们成为一个特征

  • 有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)

  • 数据类型构成:

    • 数据类型一:特征值+目标值(目标值是连续的和离散的)
    • 数据类型二:只有特征值,没有目标值
  • 数据分割:

    • 机器学习一般的数据集会划分为两个部分:

      • 训练数据:用于训练,构建模型
      • 测试数据:在模型检验时使用,用于评估模型是否有效
    • 划分比例:

      • 训练集:70% 80% 75%
      • 测试集:30% 20% 25%

2.2 数据基本处理

​ 即对数据进行缺失值、去除异常值等处理

2.3 特征工程

2.3.1什么是特征工程

特征工程是使用专业背景知识和技巧处理数据使得特征能在机器学习算法上发挥更好的作用的过程

  • 意义:会直接影响机器学习的效果
2.3.2 为什么需要特征工程(Feature Engineering)

机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ”

注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

2.3.3 特征工程包含内容
  • 特征提取
  • 特征预处理
  • 特征降维
2.3.4 各概念具体解释
  • 特征提取
    • 将任意数据(如文本或图像)转换为可用于机器学习的数字特征

image-20190222233231189

  • 特征预处理

    • 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

image-20190222233258027

  • 特征降维

    • 指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

image-20190222233316042

2.4 机器学习

选择合适的算法对模型进行训练(具体内容见1.5)

2.5 模型评估

对训练好的模型进行评估(具体内容见1.6)


拓展阅读:

完整机器学习项目的流程

3 小结

  • 机器学习定义【掌握】

    • 机器学习是从数据自动分析获得模型,并利用模型对未知数据进行预测
  • 机器学习工作流程总结【掌握】

    • 1.获取数据
    • 2.数据基本处理
    • 3.特征工程
    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤
  • 获取到的数据集介绍【掌握】

    • 数据集中一行数据一般称为一个样本,一列数据一般称为一个特征。

    • 数据集的构成:

      • 由特征值+目标值(部分数据集没有)构成
    • 为了模型的训练和测试,把数据集分为:

      • 训练数据(70%-80%)和测试数据(20%-30%)
  • 特征工程包含内容【了解】

    • 特征提取
    • 特征预处理
    • 特征降维
  • 3.特征工程

    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤
  • 获取到的数据集介绍【掌握】

    • 数据集中一行数据一般称为一个样本,一列数据一般称为一个特征。

    • 数据集的构成:

      • 由特征值+目标值(部分数据集没有)构成
    • 为了模型的训练和测试,把数据集分为:

      • 训练数据(70%-80%)和测试数据(20%-30%)
  • 特征工程包含内容【了解】

    • 特征提取
    • 特征预处理
    • 特征降维

未完待续, 同学们请等待下一期

全套笔记和代码自取在个人博客: https://gitee.com/yinuo112/Technology/tree/master/机器学习/机器学习(科学计算库)/1.md

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/670376.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux 自动定时清理缓存

文章目录 1,查看内存占用情况:1.1、free和available的区别?1.2、交换分区的作用? 2,手动清理命令3,定时自动清理3.1,创建文件夹3.2,新建文件cleanBuffer.sh3.3,添加内容3…

Transformer实战-系列教程2:Transformer算法解读2

🚩🚩🚩Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 Transformer实战-系列教程1:Transformer算法解读1 Transformer实战-系列教程2:Transformer算法解读2 5、Multi-head机制 在4中我们的输入是X&#x…

【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…

重写Sylar基于协程的服务器(6、HOOK模块的设计)

重写Sylar基于协程的服务器(6、HOOK模块的设计) 重写Sylar基于协程的服务器系列: 重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar) 重写Sylar基于协程的服务器(1、日志模…

大数据Zookeeper--案例

文章目录 服务器动态上下线监听案例需求需求分析具体实现测试 Zookeeper分布式锁案例原生Zookeeper实现分布式锁Curator框架实现分布式锁 Zookeeper面试重点选举机制生产集群安装多少zk合适zk常用命令 服务器动态上下线监听案例 需求 某分布式系统中,主节点可以有…

CentOS 8 安装配置 Hadoop3.3.6 伪分布式安装方式(适用于开发和调试)

1.配置服务器ssh免密登录,否则后面启动会报错:尝试通过SSH连接到主机出现认证错误的提示 配置服务器ssh免密登录: 1.生成SSH密钥对(如果尚未生成): 执行下面的命令生成密钥对,一直回车即可 ssh…

为后端做准备

这里写目录标题 flask 文件上传与接收flask应答(接收请求(文件、数据)flask请求(上传文件)传递参数和文件 argparse 不从命令行调用参数1、设置default值2、"从命令行传入的参数".split()3、[--input,内容] …

代码随想录day18--二叉树的应用6

LeetCode530.二叉搜索树的最小绝对差值 题目描述: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 示例 1: 输入:root [4,2,6,1,3] …

CSDN2024年我的创作纪念日1024天|不忘初心|努力上进|积极向前

CSDN2024年我的创作纪念日1024天| 学习成长机遇:学习成长收获:2023年度总结数据:2024新领域的探索:日常和自己的感慨:2024憧憬和规划:创作纪念日总结: 学习成长机遇: 大家好&#x…

SpringBoot-基础篇03

之前搭建了整个开发环境实现了登录注册,springBoot整合mybatis完成增删改查,今天完成分页查询,使用阿里云oss存储照片等资源,后期会尝试自己搭建分布式文件系统来实现。 一,SpringBootMybatis完成分页查询 1&#xff…

天线阵列车载应用——第1章 介绍 1.1节 汽车工业中的天线阵列:应用和频率范围

1.1 汽车工业中的天线阵列:应用和频率范围 无线通信系统的发展需要新的技术来支持更高质量的通信、新的服务和应用。近年来,汽车无线通信市场得到了极大的扩展。现代汽车使用不同的服务:AM/FM收音机、卫星广播(SDARS)、移动电话通信、数字音频广播(DAB)、远程无钥匙…

零基础学编程从入门到精通,系统化的编程视频教程上线,中文编程开发语言工具构件之缩放控制面板构件用法

一、前言 零基础学编程从入门到精通,系统化的编程视频教程上线,中文编程开发语言工具构件之缩放控制面板构件用法 编程入门视频教程链接 https://edu.csdn.net/course/detail/39036 编程工具及实例源码文件下载可以点击最下方官网卡片——软件下载—…

mysql事务锁

Lock - 事务锁 与 latch 的区别 lock对象是事务,用来锁定的是数据库中的对象,如表、行、页。并且一般lock的对象仅在事务commit或rollback后进行释放(不同事务隔离级别释放的时间可能不同)。此外,lock,正…

3.0 Zookeeper linux 服务端集群搭建步骤

本章节将示范三台 zookeeper 服务端集群搭建步骤。 所需准备工作,创建三台虚拟机环境并安装好 java 开发工具包 JDK,可以使用 VM 或者 vagrantvirtualbox 搭建 centos/ubuntu 环境,本案例基于宿主机 windows10 系统同时使用 vagrantvirtualb…

发送get请求并且发送请求头(header),java实现

发送get请求时,发送请求头(Header)中的内容 方便第二次调用其他url时传递参数,例如userCode或者租户编码 调用方式 Autowired private HttpServletRequest request;先注入HttpServletRequestpublic xxx xxx(){String url &quo…

docker程序镜像的制作

目录 一、每种资源的预安装(基础) 安装 nginx安装 redis 二、dockerfile文件制作(基础) 打包 redis 镜像 创建镜像制作空间制作dockerfile 打包 nginx 镜像 三、创建组合镜像(方式一) 生成centos容器并…

vue3+echarts:Vue中使用echarts从后端获取数据并赋值显示

//由于前后端交互,所以使用axios发送请求 const Count ref(null); //设备种类数值 const Name ref(null); //设备种类名称 //设备种类 饼图 const pieChart () > {const getpieChart echarts.init(document.getElementById("deviceKind"));// 创建图标getpieC…

位置内插 PI:基于Positional Interpolation扩大模型的上下文窗口

位置内插 PI:基于Positional Interpolation扩大模型的上下文窗口 如何在不牺牲性能或从头训练的情况下,扩展大型语言模型的上下文窗口以处理长文档或长对话? 论文:https://arxiv.org/pdf/2306.15595.pdf 这篇论文介绍了一种名为位…

C++ JSON解析

JSON解析 JSONCPPC实现JSON解析器 JSONCPP JSONCPP源码链接:https://github.com/open-source-parsers/jsoncpp JSOCPP源码下载以后,首先复制一份include文件夹下的json文件夹,头文件留着后续备用。 使用Cmake生成项目。在IDE中编译jsoncpp_…

【Nicn的刷题日常】之打印整数二进制的奇数位和偶数位

目录 1.题目描述 2.解题思路 3.解题 1.题目描述 获取一个整数二进制序列中所有的偶数位和奇数位,分别打印出二进制序列 2.解题思路 1. 提取所有的奇数位,如果该位是1,输出1,是0则输出0 2. 以同样的方式提取偶数位置检测n…