【C/C++ 12】C++98特性

目录

一、命名空间

二、缺省参数

三、函数重载

四、引用

五、内联函数

六、异常处理


一、命名空间

在C/C++项目中,存在着大量的变量、函数和类,这些变量、函数和类都存在于全局作用域中,可能会导致命名冲突。

使用命名空间的目的就是对标识符进行本地化,以避免命名冲突或名字污染

std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中。

在日常学习中,我们为了方便会直接展开std标准库的命名空间(using namespace std;),但是在一个项目中,为了避免存在命名冲突,我们会只展开std标准库中的一些常用的函数或对象,如(using std::cout;)。

#include <iostream>
using std::cout;int main()
{cout << "hello world!" << std::endl;
}

二、缺省参数

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实
参则采用该形参的缺省值,否则使用指定的实参。

#include <iostream>
using std::cout;// 全缺省参数
void Func1(int num1 = 0, int num2 = 0)
{cout << num1 << " " << num2 << std::endl;
}// 半缺省参数
// 半缺省参数必须从右往左依次来给出,不能间隔着给
// 缺省参数不能在函数声明和定义中同时出现
void Func2(int num1, int num2 = 0)
{cout << num1 << " " << num2 << std::endl;
}int main()
{Func1();		// 0 0Func1(1);		// 1 0Func1(1, 2);	// 1 2Func2(1);		// 1 0Func2(1, 2);	// 1 2
}

三、函数重载

C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数类型类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。

对于参数类型不同的函数重载,我们可以用模板来实现,模板是减少代码复用的一种手段,是泛型编程的基础。

#include<iostream>
using namespace std;// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}// 2、参数个数不同
void f()
{cout << "f()" << endl;
}void f(int a)
{
cout << "f(int a)" << endl;
}// 3、参数类型顺序不同
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}


四、引用

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。

void TestRef()
{int a = 10;int& ra = a;	// 定义引用类型// 引用类型必须和引用实体是同种类型的// 引用在定义时必须初始化// 一个变量可以有多个引用// 引用一旦引用一个实体,再不能引用其他实体printf("%p\n", &a);printf("%p\n", &ra);
}// 常引用
void TestConstRef()
{const int a = 10;//int& ra = a; // 该语句编译时会出错,a为常量const int& ra = a;// int& b = 10; // 该语句编译时会出错,b为常量const int& b = 10;double d = 12.34;//int& rd = d; // 该语句编译时会出错,类型不同const int& rd = d;
}// 做参数
// 引用传参,减少临时变量的拷贝,提高了效率
void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}// 做返回值
int& Count()
{static int n = 0;n++;// ...return n;
}
#include<iostream>
using namespace std;int& Add(int a, int b)
{int c = a + b;return c;
}int main()
{int& ret = Add(1, 2);Add(3, 4);cout << "Add(1, 2) is :" << ret << endl;return 0;
}// 结果是 ret == 7,为什么?

C++中引用和指针的区别:

  1. 引用是一个变量的别名,与所引用的实体类型相同;指针存储的是一个变量的地址,是一个指针类型的变量。
  2. 引用必须初始化,指针可以不初始化。
  3. 引用在初始化引用一个实体后,就不能再引用其他实体;指针可以随时指向任何一个同类型实体。
  4. 引用不能为空,指针可以为空。
  5. 引用只有一级,指针可以有多级。
  6. 引用可以直接访问和修改实体的值,指针需要解引用后才能访问和修改实体的值。
  7. 引用的自增自减是修改所引用实体的值,指针的自增自减是向后或向前偏移一个相同数据类型的地址。

五、内联函数

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。

inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。

inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。

inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。

六、异常处理

C语言程序遇到异常时一般会终止程序或返回错误码,但是在某些时候,我们是需要程序有一定的容错性的,也就是说遇到异常后将异常抛出并继续执行代码,于是C++引入了异常处理机制。

异常是一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数的
直接或间接的调用者处理这个错误。

  • throw: 当问题出现时,程序会抛出一个异常。
  • catch: 在想要处理问题的地方,通过cathc捕获异常。
  • try: try 块中的代码标识将被激活的特定异常,它后面通常跟着一个或多个 catch 块。

#include <iostream>
using namespace std;// 有可能单个的catch不能完全处理一个异常,
// 在进行一些校正处理以后,希望再交给更外层的调用链函数来处理,
// catch则可以通过重新抛出将异常传递给更上层的函数进行处理。double Division(int a, int b)
{if (b == 0)throw "Division by zero condition";elsereturn (double)a / (double)b;
}void Func()
{// 这里可以看到如果发生除0错误抛出异常,另外下面的array没有得到释放。// 所以这里捕获异常后并不处理异常,异常还是交给外面处理,这里捕获了再重新抛出去。int* arr = new int[10]{ 0 };try {int x, y;cin >> x >> y;cout << Division(x, y) << endl;}catch (...) {cout << "delete[] " << arr << endl;delete[] arr;throw;}cout << "delete[] " << arr << endl;delete[] arr;
}int main()
{try {Func();}catch (const char* errmsg) {cout << errmsg << endl;}catch (...) {cout << "unknown exception";}return 0;
}

C++中异常经常会导致资源泄漏的问题,比如在new和delete中抛出了异常,导致内存泄漏,在lock和unlock之间抛出了异常导致死锁,C++经常使用RAII(智能指针)来解决以上问题。

实际使用中很多公司都会自定义自己的异常体系进行规范的异常管理,因为一个项目中如果大家随意抛异常,那么外层的调用者基本就没办法玩了,所以实际中都会定义一套继承的规范体系。这样大家抛出的都是继承的派生类对象,捕获一个基类就可以了。

C++标准库定义的异常描述
std::exception所有标准C++异常的父类
std::bad_alloc有new抛出的异常
std::logic_error理论上可以通过读取代码来检测到的异常
std::invalid_argument使用了无效参数抛出的异常
…………


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668050.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

13.从桥接模式细品人生的几座桥

“物理学不存在了&#xff0c;今后也不会存在。”——《三体》 在《三体》中&#xff0c;有这样一个桥段&#xff0c;顶级的物理学家杨冬在三体文明超级计算机“智子”的干扰和误导下&#xff0c;得出了物理实验的结果在实验之前就会被某种力量确定的结论&#xff0c;导致自己…

2024牛客寒假算法基础集训营1(视频讲解全部题目)

2024牛客寒假算法基础集训营1&#xff08;题目全解&#xff09; ABCDEFGHIJKLM 2024牛客寒假算法基础集训营1&#xff08;视频讲解全部题目&#xff09; A #include<bits/stdc.h> #define endl \n #define deb(x) cout << #x << " " << …

elasticsearch重置密码操作

安装es的时候需要测试这个url&#xff1a;http://127.0.0.1:9200/ 出现弹窗让我输入账号和密码。我第一次登录&#xff0c;没有设置过账号和密码&#xff0c; 解决方法是&#xff1a;在es的bin目录下打开cmd窗口&#xff0c;敲命令&#xff1a;.\elasticsearch-reset-password…

AI新宠Arc浏览器真可以取代Chrome吗?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

三层交换组网实验(华为)

思科设备参考&#xff1a;三层交换组网实验&#xff08;思科&#xff09; 一&#xff0c;技术简介 三层交换技术的出现&#xff0c;解决子网必须依赖路由器进行管理的问题&#xff0c;解决传统路由器低速、复杂所造成的网络瓶颈问题。一个具有三层交换功能的设备可简单理解为…

蓝桥杯每日一题----区间dp

前言 暂时没啥好说的&#xff0c;直接进入正题吧 引入 涂色PAINT 读题发现要求的是使一段区间满足要求的最小操作次数&#xff0c;考虑用动态规划去做。 第一步&#xff1a;考虑缩小规模&#xff0c;这里的规模其实就是区间长度&#xff0c;那么dp数组应该可以表示某个区间&…

中小学信息学奥赛CSP-J认证 CCF非专业级别软件能力认证-入门组初赛模拟题一解析(选择题)

CSP-J入门组初赛模拟题一&#xff08;选择题&#xff09; 1、以下与电子邮件无关的网络协议是 A、SMTP B、POP3 C、MIME D、FTP 答案&#xff1a;D 考点分析&#xff1a;主要考查小朋友们网络相关知识的储备&#xff0c;FTP是文件传输协议和电子邮件无关&#xff0c;所以…

在vscode上传项目到gitee

一、在Gitee上新建一个仓库 Tip&#xff1a;若已经创建过了&#xff0c;直接跳到第二部分看VsCode如何上传代码到Gitee 创建仓库比较简单&#xff0c;下面两张图就是整个过程&#xff0c;这里不在赘述&#xff0c;具体如下&#xff1a; 二、VsCode连接Gitee上创建的仓…

STM32L4学习

STM32L4系列是围绕Cortex-M4构建&#xff0c;具有FPU和DSP指令集&#xff0c;主频高达80MHz。 STM32CubeL4简介 STM32Cube 是 ST 提供的一套性能强大的免费开发工具和嵌入式软件模块&#xff0c;能够让开发人员在 STM32 平台上快速、轻松地开发应用。它包含两个关键部分&…

C# 信号量(Semaphore)详细使用案例

文章目录 简介信号量的工作原理使用场景使用示例其他使用实例1. 数据库连接池管理2. 文件读写同步3. 生产者消费者问题4. 打印任务队列同步5. Web服务器并发请求限制 简介 在C#中&#xff0c;信号量&#xff08;Semaphore&#xff09;是.NET框架提供的一个同步类&#xff0c;位…

如何在Shopee平台上进行测款选品

在如今竞争激烈的电商市场&#xff0c;选择合适的产品成为卖家们提高销售业绩的重要一环。在Shopee平台上进行测款选品&#xff0c;可以帮助卖家找到符合市场需求的产品&#xff0c;提高销售业绩。本文将介绍一些策略和步骤&#xff0c;帮助卖家在Shopee平台上进行测款选品。 …

【Docker】入门到精通(常用命令解读)

一、准备工作 1.配置Docker的yum库 首先要安装一个yum工具 yum install -y yum-utils安装成功后&#xff0c;执行命令&#xff0c;配置Docker的yum源&#xff1a; yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo2.安装Docker 执…

ReactNative实现弧形拖动条

我们直接看效果 先看下面的使用代码 <CircularSlider5step{2}min{0}max{100}radius{100}value{30}onComplete{(changeValue: number) > this.handleEmailSbp(changeValue)}onChange{(changeValue: number) > this.handleEmailDpd(changeValue)}contentContainerStyle{…

FreeCAD的python脚本编写

简介 FreeCAD是一款强大的开源CAD软件&#xff0c;可以与python无缝对解&#xff0c;使用python来驱动三维几何的构建&#xff0c;具有很高的灵活性。本文主要讨论一下录制宏的方法&#xff0c;以及如何驱动特定参数 方法 打开FreeCAD软件&#xff0c;点击录制宏按钮后&…

建筑行业数字化:从设计到运维的全面革新

随着科技的快速发展&#xff0c;数字化技术在各行各业中的应用越来越广泛。建筑行业作为传统产业&#xff0c;也在积极拥抱数字化技术&#xff0c;以提高效率、降低成本并实现可持续发展。本文将主要探讨建筑行业数字化的几个关键领域&#xff0c;包括建筑设计数字化、施工管理…

配置visualsvn提交后自动邮件通知

参考&#xff1a; https://blog.csdn.net/wiker_yong/article/details/10334967 # -*- coding: utf-8 -*- import sys import os import smtplib from email.mime.text import MIMEText from email.header import Headermail_host smtp.163.com #发送邮件的smtp地址 mail_us…

JS第二天、原型、原型链、正则

☆☆☆☆ 什么是原型&#xff1f; 构造函数的prototype 就是原型 专门保存所有子对象共有属性和方法的对象一个对象的原型就是它的构造函数的prototype属性的值。prototype是哪来的&#xff1f;所有的函数都有一个prototype属性当函数被创建的时候&#xff0c;prototype属性…

Lightroom Classic 2024 --- LR2024

Lightroom Classic 2024是一款专业的图片编辑和照片管理软件&#xff0c;旨在帮助摄影师高效地处理、编辑和展示他们的作品。通过强大的组织工具&#xff0c;用户可以轻松地管理、搜索和筛选大量的照片。该软件提供了全面的编辑工具&#xff0c;包括调整颜色、曝光、对比度、白…

Linux网络通信——TCP/OSI七层模型/TCP/IP(五层或四层模型)/HTTP报文传输原理

文章目录 消息的传输什么是OSI七层模型OSI七层模型的内容物理层&#xff08;Physical Layer&#xff09;&#xff1a;数据链路层&#xff08;Data Link Layer&#xff09;&#xff1a;网络层&#xff08;Network Layer&#xff09;&#xff1a;传输层&#xff08;Transport Lay…

On the Spectral Bias of Neural Networks论文阅读

1. 摘要 众所周知&#xff0c;过度参数化的深度神经网络(DNNs)是一种表达能力极强的函数&#xff0c;它甚至可以以100%的训练精度记忆随机数据。这就提出了一个问题&#xff0c;为什么他们不能轻易地对真实数据进行拟合呢。为了回答这个问题&#xff0c;研究人员使用傅里叶分析…