使用 LoRA 在 vi​​ggo 数据集上微调 Microsoft phi-2 小语言模型

一、说明

        Microsoft 的基于 Transformer 的小语言模型。它可以根据 MIT 许可在HuggingFace上使用。

        它在 96 个 A100 GPU 上使用 1.4T 令牌进行了 14 天的训练。Phi-2 是一个 27 亿个参数的预训练 Transformer,不使用 RLHF 或指示微调。它进行下一个标记预测,并可用于问答、聊天格式和代码生成中的文本生成。

        事实证明,phi-2 在多个基准测试和编码和数学等任务上优于许多具有 7B 和 13B 参数的模型。

        小语言模型之所以具有优异的性能,是因为使用了经过提炼的高质量训练数据或“教科书质量”的数据。小语言模型使用知识蒸馏。也就是说,他们接受了从 LLMS 中提取的核心/基本知识的培训。然后采用剪枝和量化技术来删除模型的非必要部分。训练数据通常是综合数据集的混合物,这些数据集是专门创建的,旨在教导模型执行科学、日常活动、心理理论等领域的常识推理和一般知识。它还可能包含具有高教育意义的选择性网络数据价值和质量。小语言模型使用创新技术进行扩展。

        接下来,我们将看到有关如何使用 HuggingFace 中的 phi-2 进行提示的分步 Python 代码,然后我们将在 veggo 数据集上对其进行微调。我使用 T4 GPU 在 Google Colab 免费层上运行了此代码笔记本。

二、安装依赖库

        我的代码借鉴自 GitHub 上Harper Carrol 的这篇优秀教程。

  1. 安装所需的库
#@title Install required libraries
!pip install accelerate==0.25.0
!pip install bitsandbytes==0.41.1
!pip install datasets==2.14.6
!pip install peft==0.6.2
!pip install transformers==4.36.2
!pip install torch==2.1.0
!pip install einops==0.4.1  
!pip install huggingface_hub

2.所需进口

import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline, logging
from datasets import Dataset

3.我们将使用Google Colab Free tier(T4)上的cuda设备来运行模型

torch.set_default_device("cuda")

4.创建模型和分词器

#create the model object and the corresponding tokenizer
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)

5. 让我们运行一些提示并查看模型响应

# https://huggingface.co/microsoft/phi-2
# This prompt is for code completion
# here the prompt is written within the tokenizer()
inputs = tokenizer('''def fibonacci(n):"""This function prints the terms in Fibonacci series upto n"""''', return_tensors="pt", return_attention_mask=False)outputs = model.generate(**inputs, max_length=100)
text = tokenizer.batch_decode(outputs)[0]
print(text)
#https://huggingface.co/microsoft/phi-2
# here a string containing the prompt is defined separately from the tokenizer() and then passed to it
prompt = '''def fibonacci(n):"""This function prints the terms in Fibonacci series upto n"""'''
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=100)
text = tokenizer.batch_decode(outputs)[0]
print(text)
# here we see the output of phi-2 for a question-answering prompt
prompt = 'What is thee relevance of mathematics for understanding physics?'
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)

三、在HuggingFace的veggo微调 phi-2 模型 

现在我们将在HuggingFace 的“veggo”数据集上

ViGGO是视频游戏领域的英文数据到文本生成数据集。目标响应以会话形式以意义表示形式呈现。该数据集大约有 5,000 个非常干净的数据点,因此该数据集可用于评估神经模型的迁移学习、低资源或少样本能力。

6. 让我们设置加速器来加速训练/微调

#@title Set up accelerator to speed up the training/finetuning
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfigfsdp_plugin = FullyShardedDataParallelPlugin(state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)accelerator = Accelerator(fsdp_plugin=fsdp_plugin)

7. 使用有效的 HuggingFace 访问令牌登录您的 Huggingface 帐户。

        您应该在 HuggingFace 上有一个帐户,然后您可以创建一个免费的访问令牌。

#@title login to your huggingface account using your access token
# you can find your access token at https://huggingface.co/settings/tokens
from huggingface_hub import notebook_login
notebook_login()

8.加载viggo数据集

#@title load viggo dataset
from datasets import load_datasettrain_dataset = load_dataset('gem/viggo', split='train')
eval_dataset = load_dataset('gem/viggo', split='validation')
test_dataset = load_dataset('gem/viggo', split='test')

9. 加载基础模型phi-2

#@title load base model microsoft/phi-2 
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModelingbase_model_id = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(base_model_id, load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True)

10. 在下面的代码单元中,我们设置 tokenizer 对象, tokenize() 函数将 tokenizer 应用于每个提示,并创建一个“labels”列,其值与数据中的“input_ids”列相同。

        generate_and_tokenize_prompt() 函数将每个数据点转换为适合传递给 phi-2 模型的提示格式。它从数据点中提取“目标”和“含义表示”。最后,我们使用 map() 函数将此函数应用于 train 和 val 数据集中的每个数据点。

#@title set up the tokenizer for base model
tokenizer = AutoTokenizer.from_pretrained(base_model_id,add_eos_token=True,add_bos_token=True, use_fast=False, # needed for now, should be fixed soon
)#@title setup tokenize function to make labels and input_ids the same for the self-supervised fine-tuning.
def tokenize(prompt):result = tokenizer(prompt)result["labels"] = result["input_ids"].copy()return result#@title convert each sample into a promptdef generate_and_tokenize_prompt(data_point):full_prompt =f"""Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']### Target sentence:{data_point["target"]}### Meaning representation:{data_point["meaning_representation"]}"""return tokenize(full_prompt)#@title Reformat the prompt and tokenize each sample:tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)

11. 模型的输入张量通常使用 max_length 参数将每个输入填充到统一长度。

        为了确定该参数的值,我们可以绘制每个 input_id 的长度分布,并将 max_length 设置为等于最长 input_id 的长度。在本例中,选择的 max_length 为 320。

12. 接下来,我们将再次应用 tokenize(),并将 max_length 参数设置为 320。

max_length = 320 # appropriate max length for this dataset# redefine the tokenize function and tokenizertokenizer = AutoTokenizer.from_pretrained(base_model_id,padding_side="left",add_eos_token=True,  add_bos_token=True,  trust_remote_code=True,use_fast=False, # needed for now, should be fixed soon
)
tokenizer.pad_token = tokenizer.eos_tokendef tokenize(prompt):result = tokenizer(prompt,truncation=True,max_length=max_length,padding="max_length",)result["labels"] = result["input_ids"].copy()return result#@title tokenize train and validation datasets using generate_and_tokenize_prompt function
tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)

四、使用LoRA来微调phi-2

        13.让我们使用LoRA(低阶适应)来微调phi-2

        低秩适应是一种快速微调大型语言模型的技术。它冻结预训练的模型权重,并将可训练的秩分解矩阵注入到 Transformer 架构的每一层中,从而减少下游任务的可训练参数的数量。它可以将可训练参数的数量减少10000倍,将GPU内存需求减少3倍。

        要使用 LoRA 微调模型,您需要:

  1. 实例化基本模型。
  2. 创建一个配置 ( LoraConfig),在其中定义 LoRA 特定参数。
  3. 用 包裹基本模型get_peft_model()以获得可训练的PeftModel.
  4. PeftModel像平常训练基本模型一样训练。

   LoraConfig允许您通过以下参数控制 LoRA 如何应用于基础模型:

  • r:更新矩阵的秩,以 表示int。较低的秩会导致较小的更新矩阵和较少的可训练参数。
  • target_modules:应用 LoRA 更新矩阵的模块(例如,注意力块)。
  • alpha:LoRA 比例因子。
  • bias:指定是否bias应训练参数。可以是'none''all'或者'lora_only'
  • modules_to_save:除了 LoRA 层之外的模块列表,要设置为可训练并保存在最终检查点中。这些通常包括模型的自定义头,该头是为微调任务随机初始化的。
  • layers_to_transform:LoRA 转换的层列表。如果未指定,target_modules则变换中的所有图层。
  • layers_patterntarget_modules:如果layers_to_transform指定,则匹配 中图层名称的模式。默认情况下,PeftModel将查看公共层模式(layershblocks等),将其用于奇异和自定义模型。
  • rank_pattern:从图层名称或正则表达式到与 指定的默认排名不同的排名的映射r
  • alpha_pattern:从图层名称或正则表达式到 alpha 的映射,与 指定的默认 alpha 不同lora_alpha

        我们将把 LoRA 应用到模型的 Wqkv、fc1、fc2 层。

from peft import LoraConfig, get_peft_modelconfig = LoraConfig(r=8,lora_alpha=16,target_modules=["Wqkv","fc1","fc2",],bias="none",lora_dropout=0.05,  # Conventionaltask_type="CAUSAL_LM",
)model = get_peft_model(model, config)# Apply the acceleratort to the model for faster traning. 
model = accelerator.prepare_model(model)

五、 使用 LoRA 微调/训练模型

        您将需要设置训练参数或配置参数,例如保存模型的输出目录。我正在将微调后的模型保存/推送到我的 HuggingFace 帐户,您也可以将微调后的模型保存在本地目录或 Colab 目录中。

        其他训练参数包括warmup_steps、per_device_train_batch_size、gradient_accumulation_steps、max_steps、learning_rate、logging_steps、optim、logging_dir、save_strategy、save_steps、evaluation_strategy、eval_steps、do_eval、push_to_hub、report_to、run_name等。

        maz_steps 确定要执行的最大训练步骤,越长,您的模型就越精细,完成训练所需的时间也越长。当 max_steps = 1000 时,我花了 90 分钟在免费的 Google Colab 上进行训练。学习率也会影响训练时间。

#Train the model and push each check point to Huggingface
import transformerstokenizer.pad_token = tokenizer.eos_tokentrainer = transformers.Trainer(model=model,train_dataset=tokenized_train_dataset,eval_dataset=tokenized_val_dataset,args=transformers.TrainingArguments(output_dir="./phi2-finetunedonviggodataset",warmup_steps=5,per_device_train_batch_size=1,gradient_accumulation_steps=4,max_steps=500,learning_rate=2.5e-5, logging_steps=50,optim="paged_adamw_8bit",logging_dir="./logs",        # Directory for storing logssave_strategy="steps",       # Save the model checkpoint every logging stepsave_steps=50,                # Save checkpoints every 50 stepsevaluation_strategy="steps", # Evaluate the model every logging stepeval_steps=50,               # Evaluate and save checkpoints every 50 stepsdo_eval=True,                # Perform evaluation at the end of trainingpush_to_hub=True,),data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)model.config.use_cache = False  
trainer.train()

        现在您已经在 viggo 数据集上微调了 phi-2,并将其保存在 output_dir 或您的 Huggingface 帐户中。

16.接下来,我们将比较基本模型(没有微调)和微调模型(上面训练过的)上示例提示的性能

#Load the base model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLMbase_model_id = "microsoft/phi-2"base_model = AutoModelForCausalLM.from_pretrained(base_model_id,load_in_8bit=True,device_map="auto",trust_remote_code=True,torch_dtype=torch.float16,
)eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id,add_bos_token=True,trust_remote_code=True,use_fast=False,
)#create a sample prompt for evaluation on base model
eval_prompt = """Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']### Target sentence:
Earlier, you stated that you didn't have strong feelings about PlayStation's Little Big Adventure. Is your opinion true for all games which don't have multiplayer?### Meaning representation:
"""# tokenize the above prompt and generate the response from base model
model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to('cuda')
base_model.eval()
with torch.no_grad():print(eval_tokenizer.decode(base_model.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True))

17. 现在让我们从我的 HuggingFace 帐户加载经过微调的模型,并在其上测试相同的提示。

from peft import PeftModel
ft_model = PeftModel.from_pretrained(base_model, "nimrita/phi2-finetunedonviggodataset", force_download=True)eval_prompt = """Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']### Target sentence:
Earlier, you stated that you didn't have strong feelings about PlayStation's Little Big Adventure. Is your opinion true for all games which don't have multiplayer?### Meaning representation:
"""model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to('cuda')
ft_model = ft_model.to('cuda')
ft_model.eval()
with torch.no_grad():print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True))

        您刚刚微调了 phi-2。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/667826.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js事件循环机制 宏任务微任务执行时机

事件循环的工作步骤 先执行同步代码,所有同步代码都在主线程上执行,形成一个执行栈(又称调用栈,先进后出)。当遇到异步任务时,会将其挂起并添加到任务队列中(先进先出),…

17、ELK

17、ELK helm 安装 elkfk&#xff08;kafka 集群外可访问&#xff09; ES/Kibana <— Logstash <— Kafka <— Filebeat 部署顺序&#xff1a; 1、elasticsearch 2、kibana 3、kafka 4、logstash 5、filebeat kubectl create ns elkhelm3部署elkfk 1、elast…

基础面试题篇2

前言 前两天又比较忙&#xff0c;放假前的赶工。今天已经到家啦&#xff0c;咱们继续分享一下常用的基础知识。 基础面试题篇2 BIO AIO NIO有何区别&#xff1f; BIO&#xff1a;同步阻塞式 IO&#xff0c;就是我们平常使用的传统 IO&#xff0c;它的特点是模式简单使用方便…

使用PySpark处理DataFrame以拆分数组列

问题&#xff1a;用pyspark 处理df1,df1 有三列&#xff0c;第一列是商品pid,第二列是商品name,第三列是候选标品cid_list(有多个cid),将df1中的cid_list拆开,转换成一个商品id和name对应一个cid&#xff0c;但是有多行 from pyspark.sql.functions import explode, col# 假设…

神经网络 | 基于 CNN 模型实现土壤湿度预测

Hi&#xff0c;大家好&#xff0c;我是半亩花海。在现代农业和环境监测中&#xff0c;了解土壤湿度的变化对于作物生长和水资源管理至关重要。通过深度学习技术&#xff0c;特别是卷积神经网络&#xff0c;我们可以利用过去的土壤湿度数据来预测未来的湿度趋势。本文将使用 Pad…

深入了解关联查询和子查询

推荐阅读 给软件行业带来了春天——揭秘Spring究竟是何方神圣&#xff08;一&#xff09; 给软件行业带来了春天——揭秘Spring究竟是何方神圣&#xff08;二&#xff09; 文章目录 推荐阅读关联查询子查询 关联查询 关联查询 从多张表中查询对应记录的信息&#xff0c;关联查…

字节、十六进制、二进制之间的关系

字节、十六进制和二进制是计算机领域中常用的术语&#xff0c;它们之间有着密切的关系。在这篇文章中&#xff0c;我们将探讨字节、十六进制和二进制之间的关系&#xff0c;并提供一些例子来说明它们的应用。 首先&#xff0c;让我们了解一下字节。字节是计算机存储和传输数据…

组合数学基础

隔板法 X 1 X 2 . . . X n m , X i > 0 X_1X_2...X_nm,\quad X_i>0 X1​X2​...Xn​m,Xi​>0 求方程解的个数 求方程解的个数 求方程解的个数 m 个球插入 n − 1 个板将 m 个球分成 n 份 m个球插入n-1个板将m个球分成n份 m个球插入n−1个板将m个球分成n份 方程…

Ubuntu下的磁盘管理,分区管理,挂载和卸载分区

探索Ubuntu下的磁盘管理 在Ubuntu操作系统中&#xff0c;磁盘管理是系统维护中至关重要的一部分。它涉及到分区、格式化、挂载、监视以及维护磁盘等操作。本文将带您深入了解Ubuntu下的磁盘管理&#xff0c;并介绍一些常用的工具和技术。 1. 磁盘基础知识 在开始磁盘管理之前…

Acwing---3302. 表达式求值

表达式求值 1.题目2.基本思想3.代码实现 1.题目 给定一个表达式&#xff0c;其中运算符仅包含 ,-,*,/&#xff08;加 减 乘 整除&#xff09;&#xff0c;可能包含括号&#xff0c;请你求出表达式的最终值。 注意&#xff1a; 数据保证给定的表达式合法。题目保证符号 - 只作…

服务器和云服务器哪个更安全?

随着云计算技术的不断发展&#xff0c;越来越多的企业开始选择使用云服务器来存储和处理数据。然而&#xff0c;对于一些企业来说&#xff0c;他们可能更倾向于使用传统的服务器。在这种情况下&#xff0c;安全性成为了一个重要的考虑因素。那么&#xff0c;服务器和云服务器哪…

mac下载工具:JDownloader 2 for Mac 中文版

JDownloader是一款开源的下载管理工具&#xff0c;主要使用Java编程语言开发&#xff0c;因此它能够在支持Java的操作系统上运行&#xff0c;包括Windows、Linux和Mac OS。这款软件专门为那些需要通过网盘下载文件的用户提供便利&#xff0c;它支持众多流行的网盘服务&#xff…

11、SystemInit函数解读

1、系统时钟初始化函数&#xff1a;SystemInit(); 使用库函数的时候&#xff0c;在系统启动之后会自动调用 2、首先如果使用外部时钟源HSE&#xff0c;要配置外部晶振频率&#xff1a;stm32f4xx.h 3、初始化之前首先通过宏定义定义下面变量来定义系统时钟频率&#xff1a; …

python将Excel文档转成.db数据库文件

python实现Excel转.db数据库 1.程序实现 程序实现以下功能&#xff1a; 1.读取一个Excel文件,文件名通过函数传参数传入 2.将文件读取的内容保存到一个数据库文件中 3.数据库的文件名以传入的Excel文件的文件名命名 4.将excel文件的工作簿的名字作为数据库的表单名 5.将Excel…

idea修改项目git地址

大家好&#xff0c;今天给大家分享的知识是如何在idea中修改项目的git地址。 一、修改地址 首先我们先找到菜单栏中Git选项&#xff0c;然后点击管理远程&#xff08;Manage Remote&#xff09; 之后双击origin之后就可以定义名称或者URL了。

电路设计(10)——超温报警电路的proteus仿真

1.题目背景 在现实生活中&#xff0c;常有一种工程技术&#xff0c;即带有自动温度补偿的设备&#xff0c;能在规定温度内正常工作。但是为了设备安全&#xff0c;需设定工作的上限温度&#xff0c;万一温控补偿失效&#xff0c;设备温度一旦超出上限温度时&#xff0c;便立即切…

前端excel带样式导出 exceljs 插件的使用

案例 <!DOCTYPE html> <html><head><meta charset"utf-8" /><meta name"viewport" content"widthdevice-width, initial-scale1"><title>exceljs 使用</title></head><body><button …

ReactNative实现宽度变化实现的动画效果

效果如上图所示&#xff0c;通过修改设备宽度实现动画效果 import React, {useRef, useEffect, useState} from react; import {Animated, Text, View, Image} from react-native;const FadeInView props > {const fadeAnim useRef(new Animated.Value(0)).current;React…

PyTorch、NCNN、Numpy三者张量的shape

目录 一、PyTorch二、NCNN三、Numpy 一、PyTorch 在 PyTorch 中&#xff0c;张量&#xff08;Tensor&#xff09;的形状通常按照 (N, C, H, W) 的顺序排列&#xff0c;其中&#xff1a; N 是批量大小&#xff08;batch size&#xff09; C 是通道数&#xff08;channel number…

【Node系列】连接数据库

文章目录 一、连接MySql二、连接MongoDB三、相关链接 一、连接MySql 首先&#xff0c;您需要安装mysql模块。在命令行中&#xff0c;导航到您的项目目录并输入以下命令&#xff1a; npm install mysql然后&#xff0c;您可以在Node.js代码中使用mysql模块来连接MySQL数据库、…