BFS——双向广搜+A—star

有时候从一个点能扩展出来的情况很多,这样几层之后搜索空间就很大了,我们采用从两端同时进行搜索的策略,压缩搜索空间。

190. 字串变换(190. 字串变换 - AcWing题库)

思路:这题因为变化规则很多,所以我们一层一层往外扩展的时候,扩展几层后空间就会变得很大 ,那么就需要换一个思路,我们这里采用双向广搜,从两个方向来进行搜索,具体执行的时候,肯定得先从一个方向开始,那么从哪里开始呢?显然要从状态少的方向开始,我们就比较两个队列,从小的那个队列开始,然后又有新问题了,如果从一个方向开始,什么时候判停去找下一个方向,显然我们可以只往外扩展一层,扩展结束,或者两者头尾交汇的时候停止。

现在理一下我们需要哪些数据结构,首先得有两个队列分别记录从头搜索和从尾搜索的队列,另外要有两个数据结构来记录每个状态从头和从尾更新到它们时的距离。另外还要记录一下变换规则。

还有就是我们每次只往外扩展一层,所以有交汇和不交汇两种情况,如果交汇的话,那么我们可以直接返回从头到这个点和从尾到这个点的步数和,如果这个值小于10,那么显然就是最小距离,因为我们每次只从头或者从尾往外扩展一层,下次扩展时找到的,一定比当前扩展找到的多一步。当然也可能不交汇,因为我们只往外扩展一层,不交汇的时候返回一个大于10的数即可。同时我们每一次往外扩展都要记录步数,当步数大于10的时候直接停下。因为题目要求的上限就是10步。

对了如果想把两个扩展函数写在一起,一定要传入它们的更新规则,两者的扩展规则是不一样的。

#include<bits/stdc++.h>
using namespace std;
string a[10],b[10];
int n;
int expend(queue<string>&q,unordered_map<string,int>&dl,unordered_map<string,int>&dr,string a[],string b[])
{int d=dl[q.front()];while(q.size()&&dl[q.front()]==d){auto t=q.front();//cout<<t<<endl;q.pop();for(int i=0;i<n;i++){for(int j=0;j<t.size();j++){if(t.substr(j,a[i].size())==a[i]){string tmp=t.substr(0,j)+b[i]+t.substr(j+a[i].size());if(dr.count(tmp)) return dl[t]+dr[tmp]+1;if(dl.count(tmp)) continue;q.push(tmp);dl[tmp]=dl[t]+1;}}}}return 11;
}
int bfs(string s,string e)
{if(s==e) return 0;queue<string>ql,qr;unordered_map<string,int>dl,dr;ql.push(s),qr.push(e);dl[s]=dr[e]=0;int step=0;while(ql.size()&&qr.size()){int t;if(ql.size()<qr.size()) t=expend(ql,dl,dr,a,b);else t=expend(qr,dr,dl,b,a);if(t<=10) return t;if(++step>=10) return -1;}return -1;
}
int main()
{string s,e;cin>>s>>e;n=0;while(cin>>a[n]>>b[n])n++;int ans=bfs(s,e);if(ans==-1) cout<<"NO ANSWER!";else cout<<ans;
}

 另外这里补充一下substr()的用法:

形式 : s.substr(pos, len)
返回值: string,包含s中从pos开始的len个字符的拷贝(pos的默认值是0,len的默认值是s.size() - pos,即不加参数会默认拷贝整个s)
异常 :若pos的值超过了string的大小,则substr函数会抛出一个out_of_range异常;若pos+n的值超过了string的大小,则substr会调整n的值,只拷贝到string的末尾

参考链接:C++中substr()函数用法详解_substr c++-CSDN博客

 A—star算法

A—star算法也是对搜索空间进行压缩进而优化搜索。这里我们选择下一个搜索位置的时候,并不是根据它们到起点的位置来选择的,而是根据它们到起点的位置+到终点的预估值来进行选择,可以这么来理解,我们之前的bfs都是假设到终点的预估值为0,那么直接放入队列即可,这里需要用到优先队列,将从起点搜到的实际距离+到终点预估距离作为权重,放入优先队列。而预估距离要满足的条件就是小于真实距离,而且要是答案有解的情况下才能使用这个算法,否则不如bfs。

而且可以证明终点第一次出队的时候是得到的距离是最小距离。

参考链接:

AcWing 178. 第K短路(A* 反向计算最短路作为到终点的估计值) - AcWing

178. 第K短路(178. 第K短路 - AcWing题库)

思路:这道题要求起点到终点的第k短路,我们已知终点第一次出队的时候是最短路,那么第二次出队就是第儿短路,因为这条路径是被其他点更新了放进队列的,以此类推,我们只要获得终点第k次出队时的距离则可以得到答案。

然后问题就是这里的预估距离该怎么处理,因为终点固定,所以我们可以用dijkstra算法计算各点到终点的距离作为预估距离。因为它满足小于等于真实距离的条件,所以符合作为预估距离的要求。

#include<bits/stdc++.h>
using namespace std;
const int N=1010,M=20010;
typedef pair<int,int> pii;
typedef pair<int,pii> piii;
int n,m;
int rh[N],h[N],e[M],ne[M],w[M],idx;
int s,t,k;
int d[N],st[N];
void add(int h[],int a,int b,int c)
{w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dijkstra()
{memset(d,0x3f,sizeof d);d[t]=0;priority_queue<pii, vector<pii>, greater<pii>> q;q.push({0,t});while(q.size()){auto it=q.top();q.pop();int dist=it.first,v=it.second;if(st[v]) continue;st[v]=1;for(int i=rh[v];i!=-1;i=ne[i]){int j=e[i];if(d[j]>dist+w[i]){d[j]=dist+w[i];q.push({d[j],j});}}}
}
int cnt[N];
int bfs()
{priority_queue<piii, vector<piii>, greater<piii>> q;q.push({d[s],{0,s}});while(q.size()){auto it=q.top();q.pop();int dist=it.second.first,v=it.second.second;cnt[v]++;if(v==t&&cnt[v]==k) return dist;for(int i=h[v];i!=-1;i=ne[i]){int j=e[i];if(cnt[j]<k)q.push({dist+w[i]+d[j],{dist+w[i],j}});}}return -1;
}
int main()
{memset(h,-1,sizeof h);memset(rh,-1,sizeof rh);scanf("%d%d",&n,&m);for(int i=1;i<=m;i++){int a,b,c;scanf("%d%d%d",&a,&b,&c);add(h,a,b,c);add(rh,b,a,c);}scanf("%d%d%d",&s,&t,&k);if(s==t) k++;//因为最初s就会被放进去,每条最短路中至少要包含一条边。dijkstra();cout<<bfs();
}

 179. 八数码(179. 八数码 - AcWing题库)

这题是将棋盘整个视为一种状态,我们每一个点最多只能扩展出四种状态,我们可以用之前魔板那道题的写法,稍微变一下,变成双向广搜,自然也可以用A—star算法,因为状态还是有些许多。

A—star算法需要保证有解,那么我们就提前预判一下是否有解,如果有解再去进行查找。

八数码问题有个预判的技巧,我们按行读入数字,得到的一个数组中,如果逆序对的数量为奇数,那么就无解,如果逆序对的数量为偶数,那么就有解。

可以这么来理解,如果我们在行内进行移动,实际上并没有改变序列,也就是并未改变逆序对数量,如果在行与行之间进行移动,那么相当于只改变了它前面或者后面两个数的位置,我们以一种情况为例,它实际上就只改变了3个数内部的相对顺序,所以实际上逆序对的数量要么不变要么就多2或者少2,所以起始状态和结束状态中逆序对的奇偶性相同,我们可以顺序排列的时候逆序对的数量是0,那么起始状态中逆序对的数量应该是偶数。

然后就是考虑估价函数,我们计算出每个数当前位置和目标位置的曼哈顿距离,很显然,每次移动最好的情况只会让一个数和它的实际位置的曼哈顿距离减1,所以我们可以将每个状态中每个数当前位置与目标位置的曼哈顿距离和算出来,作为预估距离。 

#include<bits/stdc++.h>
using namespace std;
string s,e;
char a[4][4];
unordered_map<string,int>d;
unordered_map<string,pair<string,char>>pre;
char op[]={'u','d','l','r'};//x的位置
void toa(string t)
{for(int i=0;i<t.size();i++){a[i/3][i%3]=t[i];}
}
string tos()
{string res="";for(int i=0;i<3;i++)for(int j=0;j<3;j++)res += a[i][j];return res;
}
string move0(string t)//u
{toa(t);int x,y;for(int i=0;i<3;i++)for(int j=0;j<3;j++)if(a[i][j]=='x') x=i,y=j;if(x!=0){swap(a[x][y],a[x-1][y]);}return tos();
}
string move1(string t)//d
{toa(t);int x,y;for(int i=0;i<3;i++)for(int j=0;j<3;j++)if(a[i][j]=='x') x=i,y=j;if(x!=2){swap(a[x][y],a[x+1][y]);}return tos();
}
string move2(string t)//l
{toa(t);int x,y;for(int i=0;i<3;i++)for(int j=0;j<3;j++)if(a[i][j]=='x') x=i,y=j;if(y!=0){swap(a[x][y],a[x][y-1]);}return tos();
}
string move3(string t)//r
{toa(t);int x,y;for(int i=0;i<3;i++)for(int j=0;j<3;j++)if(a[i][j]=='x') x=i,y=j;if(y!=2){swap(a[x][y],a[x][y+1]);}return tos();
}
typedef pair<int,pair<int,string>> piis;
int tj(string g)
{int cnt=0;//逆序对数量for(int i=0;i<g.size();i++){for(int j=i+1;j<g.size();j++){if(g[i]>g[j]) cnt++;}}return cnt;
}
void bfs()
{priority_queue<piis,vector<piis>,greater<piis>>q;int cnt=tj(s);q.push({cnt,{0,s}});d[s]=0;if(s==e) return;while(q.size()){auto t=q.top();q.pop();string tv=t.second.second;int dist=t.second.first;// cout<<tv<<endl;string tmp[5];tmp[0]=move0(tv);tmp[1]=move1(tv);tmp[2]=move2(tv);tmp[3]=move3(tv);for(int i=0;i<4;i++){// cout<<tmp[i]<<endl;if(d.count(tmp[i])) continue;d[tmp[i]]=dist+1;pre[tmp[i]]={tv,op[i]};cnt=tj(tmp[i]);q.push({cnt+d[tmp[i]],{d[tmp[i]],tmp[i]}});if(tmp[i]==e) return;}//cout<<endl;}
}
int main()
{string g="";char c;while(cin>>c)//不会录入空格{s += c;if(c!='x') g+=c;}e="12345678x";int cnt=0;//逆序对数量for(int i=0;i<g.size();i++){for(int j=i+1;j<g.size();j++){if(g[i]>g[j]) cnt++;}}if(cnt%2) cout<<"unsolvable";else{bfs();//cout<<d[e]<<endl;if(d[e]){string res="";while(e!=s){res += pre[e].second;e=pre[e].first;}reverse(res.begin(),res.end());cout<<res;}}
}

ps:代码看似复杂,但复用率极高,只要把逻辑盘清楚,实际上并不麻烦。

总的来说,A—star可以提高效率,但是估价函数一定要写明白。

另外补充一点,cin录单个字符的时候不会把空格录进去,如果没有更好的方法避免空格的话,可以用cin。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/667334.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

golang开源的可嵌入应用程序高性能的MQTT服务

golang开源的可嵌入应用程序高性能的MQTT服务 什么是MQTT&#xff1f; MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级的、开放的消息传输协议&#xff0c;设计用于在低带宽、高延迟或不可靠的网络环境中进行通信。MQTT最初由IBM开发&#xf…

canvas设置图形各种混合模式,类似photoshop效果

查看专栏目录 canvas实例应用100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

一看就会《幻兽帕鲁》服务器自建指南

玩转幻兽帕鲁服务器&#xff0c;阿里云推出新手0基础一键部署幻兽帕鲁服务器教程&#xff0c;傻瓜式一键部署&#xff0c;3分钟即可成功创建一台Palworld专属服务器&#xff0c;成本仅需26元&#xff0c;阿里云服务器网aliyunfuwuqi.com分享2024年新版基于阿里云搭建幻兽帕鲁服…

jmeter设置定时器

前言 本文主要分享两种定时器&#xff08;同步定时器、固定定时器&#xff09;的用法&#xff0c;从作用&#xff0c;设置方法以及实例演示几个方面讲解&#xff0c;结尾还有小知识哦&#xff01;一起开始学习吧&#xff01; 一、同步定时器&#xff08;集合点&#xff09; …

[leetcode] 22. 括号生成

文章目录 题目描述解题方法方法一&#xff1a;dfs遍历java代码 方法二&#xff1a;按照卡特兰数的思路递归求出有效括号组合java代码 相似题目 题目描述 数字 n 代表生成括号的对数&#xff0c;请你设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 示…

SQL注入其他方法

此次实验因为环境问题很多无法复现&#xff0c;在此只讨论过程和方法 一、SQL注入之outfile注入 mysql的outfile的作用是导出文件&#xff0c;使用此方法的必要条件&#xff1a;&#xff08;此方法成功率极低&#xff09; 1、知道目标网站的物理路径&#xff1b; 2、%secur…

便宜寄快递,就选闪侠惠递,帮您省钱!

随着电子商务的发展&#xff0c;物流也越来越发达&#xff0c;人们的生活中有很多地方都与物流快递打交道。网购或者给远方的亲戚朋友寄礼物等等都需要快递。有时候就止步于昂贵的快递的&#xff0c;其实选对方法&#xff0c;寄快递并不贵... 编辑 现在一般寄快递都是选择去菜鸟…

5分钟快速掌握 XML (Extensible Markup Language)

背景 在Java开发的过程中&#xff0c;我们经常需要和配置文件打交道&#xff0c;其中接触最多的就是XML。从最初学习 JavaWeb 时在 Tomcat 中配置servlet&#xff0c;到后来接触Spring框架并在XML中编写各种配置&#xff0c;XML一直是不可或缺的一部分。然而&#xff0c;XML的…

1-2 动手学深度学习v2-基础优化方法-笔记

最常见的算法——梯度下降 当一个模型没有显示解的时候&#xff0c;该怎么办呢&#xff1f; 首先挑选一个参数的随机初始值&#xff0c;可以随便在什么地方都没关系&#xff0c;然后记为 w 0 \pmb{w_{0}} w0​在接下来的时刻里面&#xff0c;我们不断的去更新 w 0 \pmb{w_{0}…

我在代码随想录|写代码Day25 |回溯算法|93.复原IP地址 , 78.子集 , 90.子集II

学习目标&#xff1a; 博主介绍: 27dCnc 专题 : 数据结构帮助小白快速入门 &#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d; ☆*: .&#xff61;. o(≧▽≦)…

C系列-动态内存管理

&#x1f308;个人主页: 会编程的果子君 ​&#x1f4ab;个人格言:“成为自己未来的主人~” 目录 为什么要有动态内存分配 malloc和free malloc free calloc和realloc calloc realloc 常见的动态内存的错误 对NULL指针的解引用操作 ​编辑 对动态开辟空间的越界访问…

查看自己电脑是arm还是x64(x86);linux操作系统识别

1、查看自己电脑是arm还是x64&#xff08;x86&#xff09; linux 参考&#xff1a; https://liuweiqing.blog.csdn.net/article/details/131783851 uname -a如果输出是 x86_64&#xff0c;那么你的系统是 64 位的 x86 架构&#xff08;通常我们称之为 x64&#xff09;。如果…

2023高精地图甲级测绘资质最新名单【高德地图】

根据2023年自然资源部公布的名单显示&#xff0c;以下公司通过“地图甲级测绘资质”换证审核&#xff0c;也就意味着&#xff0c;以下这些公司可以继续从事电子地图的采集和制作、商业合作等相关业务。 而这一点&#xff0c;对于以电子地图导航为主要业务支撑的企业至关重要。…

创建TextMeshPro字体文件

相比于Unity的Text组件&#xff0c;TextMesh Pro提供了更强大的文本格式和布局控制&#xff0c;更高级的文本渲染技术&#xff0c;更灵活的文本样式和纹理支持&#xff0c;更好的性能以及更易于使用的优点。但unity自带TextMeshPro字体不支持中文。这里使用普通字体文件生成Tex…

Spring事件之注解@EventListener讲解

文章目录 1 注解EventListener1.1 示例Demo1.1.1 简单例子1.1.2 解耦1.1.3 Spring事件 1.2 深入EventListener1.2.1 debug调试1.2.2 问题一&#xff1a; Spring是怎么知道要去触发这个方法1.2.3 问题二&#xff1a;ApplicationListenerMethodAdapter1.2.4 问题三&#xff1a;Si…

(12)喝汽水

文章目录 每日一言题目解题思路一代码 解题思路二代码 结语 每日一言 长风沛雨&#xff0c;艳阳明月。田野被喜悦铺满&#xff0c;天地间充满着生的豪情。 题目 已知1瓶汽水1元&#xff0c;2个空瓶可以换一瓶汽水&#xff0c;输入整数n&#xff08;n>0&#xff09;&#x…

Maven工程的配置及使用

一、Maven章节 Maven 是 Apache 软件基金会组织维护的一款专门为 Java 项目提供构建和依赖管理支持的工具 1.1、maven的作用 1&#xff09;依赖管理&#xff1a; 方便快捷的管理项目依赖的资源包&#xff08;jar包&#xff09;避免版本冲突 2&#xff09;统一项目结构&…

Android studio打开md无法显示md渲染问题

Where is Android Studio Markdown support plugin preview preference? - Stack Overflow android studio开发无法选择markdown渲染功能的问题 原因是java runtime出了问题 搜索下面功能 Choose Boot Java Runtime for the IDE 选择带JCEF的 可以选最新的java版本 重启之…

Jvm FullGC 如何排查?

使用场景 我们在使用系统时&#xff0c;有时请求和响应会变得特别慢&#xff0c;系统也变得很卡。 有可能是FullGC的问题&#xff0c;可以逐步地进行排查。 使用jps和top确定进程号pid jps可以列出正在运行的jvm进程&#xff0c;并显示jvm执行主类名称( main()函数所在的类…