【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)

本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN),商品物体检测项目介绍,YOLO与SSD,商品检测数据集训练和模型导出与部署。

全套笔记和代码自取移步gitee仓库: gitee仓库获取完整文档和代码

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 9 章,60 子模块

TensorFlow介绍

说明TensorFlow的数据流图结构
应用TensorFlow操作图
说明会话在TensorFlow程序中的作用
应用TensorFlow实现张量的创建、形状类型修改操作
应用Variable实现变量op的创建
应用Tensorboard实现图结构以及张量值的显示
应用tf.train.saver实现TensorFlow的模型保存以及加载
应用tf.app.flags实现命令行参数添加和使用
应用TensorFlow实现线性回归

2.4 张量

学习目标

  • 目标

    • 知道常见的TensorFlow创建张量
    • 知道常见的张量数学运算操作
    • 说明numpy的数组和张量相同性
    • 说明张量的两种形状改变特点
    • 应用set_shape和tf.reshape实现张量形状的修改
    • 应用tf.matmul实现张量的矩阵运算修改
    • 应用tf.cast实现张量的类型
  • 应用

  • 内容预览

    • 2.4.1 张量(Tensor)

      • 1 张量的类型
      • 2 张量的阶
    • 2.4.2 创建张量的指令

      • 固定值张量
      • 随机值张量
    • 2.4.3 张量的变换

      • 1 类型改变
      • 2 形状改变
    • 2.4.4 张量的数学运算

在编写 TensorFlow 程序时,程序传递和运算的主要目标是tf.Tensor

2.4.1 张量(Tensor)

TensorFlow 的张量就是一个 n 维数组, 类型为tf.Tensor。Tensor具有以下两个重要的属性

  • type:数据类型
  • shape:形状(阶)

2.4.1.1 张量的类型

类型

2.4.1.2 张量的阶

阶

形状有0阶、1阶、2阶….

tensor1 = tf.constant(4.0)
tensor2 = tf.constant([1, 2, 3, 4])
linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)print(tensor1.shape)# 0维:()   1维:(10, )   2维:(3, 4)   3维:(3, 4, 5)

2.4.2 创建张量的指令

  • 固定值张量

固定值张量

  • 随机值张量

随机值张量

  • 其它特殊的创建张量的op

    • tf.Variable
    • tf.placeholder

2.4.3 张量的变换

1 类型改变

类型变换

2 形状改变

TensorFlow的张量具有两种形状变换,动态形状和静态形状

  • tf.reshape
  • tf.set_shape

关于动态形状和静态形状必须符合以下规则

  • 静态形状

    • 转换静态形状的时候,1-D到1-D,2-D到2-D,不能跨阶数改变形状
    • 对于已经固定的张量的静态形状的张量,不能再次设置静态形状
  • 动态形状

    • tf.reshape()动态创建新张量时,张量的元素个数必须匹配
def tensor_demo():"""张量的介绍:return:"""a = tf.constant(value=30.0, dtype=tf.float32, name="a")b = tf.constant([[1, 2], [3, 4]], dtype=tf.int32, name="b")a2 = tf.constant(value=30.0, dtype=tf.float32, name="a2")c = tf.placeholder(dtype=tf.float32, shape=[2, 3, 4], name="c")sum = tf.add(a, a2, name="my_add")print(a, a2, b, c)print(sum)# 获取张量属性print("a的图属性:\n", a.graph)print("b的名字:\n", b.name)print("a2的形状:\n", a2.shape)print("c的数据类型:\n", c.dtype)print("sum的op:\n", sum.op)# 获取静态形状print("b的静态形状:\n", b.get_shape())# 定义占位符a_p = tf.placeholder(dtype=tf.float32, shape=[None, None])b_p = tf.placeholder(dtype=tf.float32, shape=[None, 10])c_p = tf.placeholder(dtype=tf.float32, shape=[3, 2])# 获取静态形状print("a_p的静态形状为:\n", a_p.get_shape())print("b_p的静态形状为:\n", b_p.get_shape())print("c_p的静态形状为:\n", c_p.get_shape())# 形状更新# a_p.set_shape([2, 3])# 静态形状已经固定部分就不能修改了# b_p.set_shape([10, 3])# c_p.set_shape([2, 3])# 静态形状已经固定的部分包括它的阶数,如果阶数固定了,就不能跨阶更新形状# 如果想要跨阶改变形状,就要用动态形状# a_p.set_shape([1, 2, 3])# 获取静态形状print("a_p的静态形状为:\n", a_p.get_shape())print("b_p的静态形状为:\n", b_p.get_shape())print("c_p的静态形状为:\n", c_p.get_shape())# 动态形状# c_p_r = tf.reshape(c_p, [1, 2, 3])c_p_r = tf.reshape(c_p, [2, 3])# 动态形状,改变的时候,不能改变元素的总个数# c_p_r2 = tf.reshape(c_p, [3, 1])print("动态形状的结果:\n", c_p_r)# print("动态形状的结果2:\n", c_p_r2)return None

2.4.4 张量的数学运算

  • 算术运算符
  • 基本数学函数
  • 矩阵运算
  • reduce操作
  • 序列索引操作

这些API使用,我们在使用的时候介绍,具体参考文档

2.5 变量OP

  • 目标

    • 说明变量op的特殊作用
    • 说明变量op的trainable参数的作用
    • 应用global_variables_initializer实现变量op的初始化
  • 应用

  • 内容预览

    • 2.5.1 创建变量
    • 2.5.2 使用tf.variable_scope()修改变量的命名空间

TensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类进行操作。变量的特点:

  • 存储持久化
  • 可修改值
  • 可指定被训练

2.5.1 创建变量

  • tf.Variable(initial_value=None,trainable=True,collections=None,name=None)

    • initial_value:初始化的值
    • trainable:是否被训练
    • collections:新变量将添加到列出的图的集合中collections,默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True变量也被添加到图形集合 GraphKeys.TRAINABLE_VARIABLES
  • 变量需要显式初始化,才能运行值

def variable_demo():"""变量的演示:return:"""# 定义变量a = tf.Variable(initial_value=30)b = tf.Variable(initial_value=40)sum = tf.add(a, b)# 初始化变量init = tf.global_variables_initializer()# 开启会话with tf.Session() as sess:# 变量初始化sess.run(init)print("sum:\n", sess.run(sum))return None

2.5.2 使用tf.variable_scope()修改变量的命名空间

会在OP的名字前面增加命名空间的指定名字

with tf.variable_scope("name"):var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)<tf.Variable 'name/var:0' shape=() dtype=float32_ref>
<tf.Variable 'name/var_1:0' shape=() dtype=float32_ref>

请期待下一期

pe()修改变量的命名空间

会在OP的名字前面增加命名空间的指定名字

with tf.variable_scope("name"):var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)<tf.Variable 'name/var:0' shape=() dtype=float32_ref>
<tf.Variable 'name/var_1:0' shape=() dtype=float32_ref>

请期待下一期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/666747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLaMA 模型中的Transformer架构变化

目录 1. 前置层归一化&#xff08;Pre-normalization&#xff09; 2. RMSNorm 归一化函数 3. SwiGLU 激活函数 4. 旋转位置嵌入&#xff08;RoPE&#xff09; 5. 注意力机制优化 6. Group Query Attention 7. 模型规模和训练超参数 8. 分布式模型训练 前置归一化与后置…

PHP面试问题与简答

问题与简答 PHP 篇 echo、print、print_r、var_dump 区别 echo和print是语言结构、print_r和var_dump是普通函数 echo&#xff1a;输出一个或多个字符串 print&#xff1a;输出字符串 print_r&#xff1a;打印关于变量的易于理解的信息 var_dump&#xff1a;打印关于变量的…

适合大学英语搜题的软件?如何选择一款好用的大学搜题工具? #职场发展#微信#学习方法

大学生必备的搜题工具&#xff0c;专业课本习题、电子版教材、考研资料、英语四六级等考试题目也能一并搜索&#xff0c;每道题目都有详细的讲解&#xff0c;每个都堪称大学神器。 1.颐博咨询 这是一个网站 找题好用的在线搜题站,快考不限次搜题助手,问题截图搜题软件,练题通…

【文本到上下文 #8】NLP中的变形金刚:解码游戏规则改变者

一、说明 欢迎来到我们对不断发展的自然语言处理 &#xff08;NLP&#xff09; 领域的探索的第 8 章。在本期中&#xff0c;我们将重点介绍一项重塑 NLP 格局的突破性创新&#xff1a;Transformers。在我们之前对 seq2seq 模型、编码器-解码器框架和注意力机制的讨论之后&#…

17.Golang channel的基本定义及使用

目录 概述实践无缓冲 channel代码结果 缓冲 channel代码结果 channel的关闭特点代码结果range代码结果 select channel代码结果 结束 概述 此篇文章介绍 channel 的用法 无缓冲 channel缓冲 channelchannel的关闭特点range channelselect channel 每一种&#xff0c;配上完整…

Macbook 安装金铲铲之战等 IOS 游戏

前言 Macbook 现在可以玩一下 IOS 系统上的游戏啦&#xff0c;以笔者的 M1 Pro 芯片为例 步骤 一、安装 PlayCover 推荐 Sonama 安装 Nightly 版本 官网地址&#xff1a; https://playcover.io/ Nightly: https://nightly.link/playcover/playcover/workflows/2.nightly_re…

c++入门学习⑤——对象模型和this指针

目录 前言&#xff1a; 成员变量和成员函数分开储存 ⭐ 注意&#xff1a; 案例&#xff1a; this指针的概念 介绍&#xff1a; 用途&#xff1a; 错误案例&#xff1a; 解决方案&#xff1a; 注意函数为什么用引用返回呢&#xff0c;如果用值返回&#xff0c;结果会产…

老师翻学生书包违法吗

作为一位老师&#xff0c;我们的职责是教育和引导学生&#xff0c;让他们成为有道德、有知识、有能力的人才。但是&#xff0c;我们有时会遇到一些问题&#xff0c;比如是否可以翻学生的书包。这个问题一直备受争议。 学生的个人隐私权是受到法律保护的。学生享有个人隐私权&a…

【漏洞复现】EduSoho教培系统 任意文件读取

该文章由掌控安全学院——1782814368投稿 【产品介绍】 EduSoho企培系统&#xff0c;基于EduSoho教育云PaaS平台的底层技术打造&#xff0c;专门为快速发展的企业提供一体化企业培训、企业内训组织解决方案&#xff0c;专注人才培养、专注组织建设&#xff0c;帮助企业构建学…

NIO Selector简介

1.Selector和Channel关系 Selector一般称为选择器&#xff0c;也叫多路复用器&#xff0c;NIO的核心组件&#xff0c;用于检查一个或多个Channel的状态是否处于可读、可写的状态。 2.可选择通道 &#xff08;1&#xff09;不是所有的channel都能被selector复用&#xff0c;…

LDRA Testbed软件静态分析_Jenkins持续集成_(2)配置邮件自动发送静态分析结果

系列文章目录 LDRA Testbed软件静态分析_操作指南 LDRA Testbed软件静态分析_自动提取静态分析数据生成文档 LDRA Testbed软件静态分析_Jenkins持续集成_(1)自动进行静态分析的环境搭建 LDRA Testbed软件静态分析_Jenkins持续集成_(2)配置邮件自动发送静态分析结果 LDRA Testb…

【劳德巴赫 Trace32 高阶系列 5 -- Trace32 JTAG Data.Load 与 Data.Save】

请阅读【Trace32 高阶系列 专栏导读】 文章目录 Data.Load.binaryData.SAVE.BinaryData.Load.binary 用于将二进制文件加载到目标系统的内存中。 Format: Data.LOAD.Binary <file> <address> | <range> [/<option>] <option>: SKIP <of…

基于python+控制台输出的学生信息管理系统

基于python控制台输出的学生信息管理系统 一、系统介绍二、效果展示三、其他系统实现四、获取源码 一、系统介绍 打印功能菜单、添加学生信息、删除学生信息、修改学生信息、显示学生信息、退出系统&#xff0c;并且需要接收用户的输入&#xff0c;在根据输入内容调用相应函数…

理解进程的一些知识准备

1. 认识冯诺依曼体系结构 计算机有很多的体系结构&#xff0c;但到如今&#xff0c;冯诺依曼体系结构变成了主流。 输入设备&#xff1a;话筒、键盘、摄像头、鼠标、磁盘、网卡… 输出设备&#xff1a;声卡、显示器、打印机、显卡、网卡、磁盘… 有的设备既能作为输入设备又能…

多播路由选择

目录 1 多播路由选择 1.1 转发多播数据报时使用三种方法 (1) 洪泛与剪除 RPB 的要点&#xff1a; 1.检查&#xff0c;转发 2.形成以源为根节点的多播转发树 3.剪枝与嫁接 (2) 隧道技术 (tunneling) (3) 基于核心的发现技术 1.2 几种多播路由选择协议 1 多播路由选择 …

docker 构建个人博客网站

1、项目地址 https://gitee.com/hhll/blog-hangliang.git 2、打包docker镜像并上传docker hub 【1】注册docker hub账号https://hub.docker.com/ 【2】在docker hub建对应的仓库 【3】登录docker hub并打包上传前后端镜像 sudo docker login -u xxxx 密码 xxxxxx 后端&am…

视频业务像素、带宽、存储空间计算

一、像素和分辨率 分辨率的单位通常是像素&#xff08;或点&#xff09;&#xff0c;用水平像素数乘以垂直像素数来表示。例如&#xff0c;一个分辨率为1920 x 1080的屏幕有1920个水平像素和1080个垂直像素。 总像素分辨率公式运算 例如 1920 x 10802073600总约200万 500W≈…

Makefile学习

C语言的编译过程 预处理&#xff08;Preprocessing&#xff09; -E是让编译器在预处理之后就退出&#xff0c;不进行后续编译过程&#xff1b;-o是指定输出文件名。 gcc -E hello.c -o hello.i编译&#xff08;Compilation&#xff09; 这里的编译不是指程序从源文件到二进制…

XUbuntu22.04之如何创建、切换多个工作区(二百零九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

Android简单支持项目符号的EditText

一、背景及样式效果 因项目需要&#xff0c;需要文本编辑时&#xff0c;支持项目符号&#xff08;无序列表&#xff09;尝试了BulletSpan&#xff0c;但不是很理想&#xff0c;并且考虑到影响老版本回显等因素&#xff0c;最终决定自定义一个BulletEditText。 先看效果&…