C++ pair+map+set+multimap+multiset+AVL树+红黑树(深度剖析)

文章目录

  • 1. 前言
  • 2. 关联式容器
  • 3. pair——键值对
  • 4. 树形结构的关联式容器
    • 4.1 set
      • 4.1.1 set 的介绍
      • 4.1.2 set 的使用
    • 4.2 map
      • 4.2.1 map 的介绍
      • 4.2.2 map 的使用
    • 4.3 multiset
      • 4.3.1 multiset 的介绍
      • 4.3.2 multiset 的使用
    • 4.4 multimap
      • 4.4.1 multimap 的介绍
      • 4.4.2 multimap 的使用
  • 5. 底层结构
    • 5.1 AVL 树
      • 5.1.1 AVL 树的概念
      • 5.1.2 AVL 树节点的定义
      • 5.1.3 AVL 树的插入
      • 5.1.4 AVL 树的旋转
      • 5.1.5 AVL 树的验证
      • 5.1.6 AVL 树的删除(了解)
      • 5.1.7 AVL 树全部代码
      • 5.1.8 AVL 树的性能
    • 5.2 红黑树
      • 5.2.1 红黑树的概念
      • 5.2.2 红黑树的性质
      • 5.2.3 红黑树节点的定义
      • 5.2.4 红黑树的插入
      • 5.2.5 红黑树的验证
      • 5.2.6 红黑树的删除(了解)
      • 5.2.7 红黑树全部代码
      • 5.2.8 红黑树与 AVL 树的比较
    • 5.3 红黑树模拟实现 STL 中的 map 与 set
      • 5.3.1 迭代器实现
      • 5.3.2 改造红黑树
      • 5.3.3 map 的模拟实现
      • 5.3.4 set 的模拟实现


1. 前言

在学习二叉搜索树的过程中,我们发现当二叉搜索树为单支树时,其搜索的效率是很低的。为了能让二叉搜索树的搜索效率稳定在 l o g 2 N log_2 N log2N,我们引入两种新的二叉搜索树—— AVL 树和红黑树。而 STL 库中的 map 和 set 在底层中用到的数据结构就是红黑树。

本篇文章将着重讲解关联式容器、键值对、树形结构的关联式容器(set、map、multiset 和 multimap)、AVL 树的模拟实现、红黑树的模拟实现以及 map 和 set 的模拟实现。

2. 关联式容器

在此之前,我们已经接触过 STL 中的部分容器,比如:vector、list、deque、forward_list 等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?

关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对在数据检索时比序列式容器效率更高

3. pair——键值对

键值对用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量 key 和 value,key 代表键值,value 表示与 key 对应的信息。
比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义。

SGI-STL 中关于键值对的定义:

template <class T1, class T2>
struct pair
{typedef T1 first_type;typedef T2 second_type;T1 first;T2 second;pair() : first(T1()), second(T2()){}pair(const T1& a, const T2& b) : first(a), second(b){}
};

解释:

  1. pair 有两个模板参数,分别命名为 T1 和 T2,用于表示键和值的类型。
  2. pair 有两个公有成员类型别名:first_type 和 second_type,分别表示键和值的类型。
  3. pair 有两个公有成员变量:first 和 second,用于存储键值对的具体值。

补充:

我们构造键值对时常调用 make_pair 函数,其定义为:

template <class T1, class T2>
pair<T1, T2> make_pair(T1 x, T2 y)
{return (pair<T1, T2>(x, y));
}

4. 树形结构的关联式容器

根据应用场景的不同,STL 总共实现了两种不同结构的关联式容器:树型结构与哈希结构。

树型结构的关联式容器主要有四种:map、set、multimap、multiset。
这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结构,容器中的元素是一个有序的序列。下面一依次介绍每一个容器。

4.1 set

4.1.1 set 的介绍

英文解释:

在这里插入图片描述

也就是说:

  1. set 是按照一定次序存储元素的容器。

  2. 在 set 中,元素的 value 也是其标识符(value 就是 key ,类型为 T),并且每个 value 必须是唯一的。set 中的元素不能在容器中修改(元素总是 const),但是可以从容器中插入或删除它们。

  3. 在内部,set 中的元素总是按照其内部比较规则(类型为 Compare)所指示的特定严格弱排序准则进行排序。

  4. set 容器通过 key 访问单个元素的速度通常比 unordered_set 容器慢,但它们允许根据顺序对子集进行直接迭代。

  5. set 在底层是用二叉搜索树(红黑树)实现的。

注意:

  1. 与 map/multimap 不同,map/multimap 中存储的是真正的键值对 <key, value>,set 中只存放 value。

  2. set 中插入元素时,只需要插入 value 即可,不需要构造键值对。

  3. set 中的元素不可以重复(因此可以使用set进行去重)。

  4. 使用 set 的迭代器遍历 set 中的元素,可以得到有序序列。

  5. set 中的元素默认按照小于来比较。

  6. set 中查找某个元素,时间复杂度为: l o g 2 n log_2 n log2n

  7. set 中的元素不允许修改。

  8. set 中的底层使用二叉搜索树(红黑树)来实现。

4.1.2 set 的使用

  1. set 的模板参数列表

在这里插入图片描述

说明:

  • T:set中存放元素的类型。

  • Compare:set 中元素默认按照小于来比较。

  • Alloc:set 中元素空间的管理方式,使用 STL 提供的空间配置器管理。

  1. set 的构造函数
函数声明功能介绍
explicit set (const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type());构造空的 set。
template <class InputIterator>
set (InputIterator first, InputIterator last, const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type());
用 [first, last) 区间中的元素构造 set。
set (const set& x);set 的拷贝构造。
  1. set 的容量操作

    函数名称函数声明功能介绍
    emptybool empty() const;检测 set 是否为空,空返回 true,否则返回 false。
    sizesize_t size() const;返回 set 中有效元素的个数。
  2. set 的修改操作

    函数名称函数声明功能介绍
    insertpair<iterator,bool> insert (const value_type& val);在 set 中插入元素 val。如果插入成功,返回 <val 位置的迭代器,true>;如果插入失败,说明 val 在 set 中已经存在,返回 <val 位置的迭代器,false>。
    erasevoid erase (iterator position);
    size_t erase (const value_type& val);
    删除 set 中 position 位置上的元素。
    删除 set 中值为 val 的元素,返回删除的元素的个数(这里只会返回0或1)。
    swapvoid swap (set& x);与 x 交换元素。
    clearvoid clear();将 set 的元素清空。
  3. set 的其它操作

    函数名称函数声明功能介绍
    finditerator find (const value_type& val) const;在 set 中查找值为 val 的元素,如果找到则返回该元素位置的迭代器,未找到则返回 end 迭代器。
    countsize_t count (const value_type& val) const;返回 set 中值为 val 的元素的个数(这里只会返回0或1)。
  4. set 的用法举例

    代码举例:(相关说明在代码注释中)

    #include <iostream>
    #include <set>
    using namespace std;
    void TestSet()
    {// 用数组array中的元素构造setint array[] = { 1,3,5,7,9,9,7,5,3,1 };set<int> s(array, array + sizeof(array) / sizeof(array[0]));cout << s.size() << endl;// 正向打印set中的元素,从打印结果中可以看出:set可去重for (auto& e : s)cout << e << " ";cout << endl;// 插入pair<set<int>::iterator, bool> p1 = s.insert(0);pair<set<int>::iterator, bool> p2 = s.insert(1);cout << "val: " << *(p1.first) << " bool: " << p1.second << endl; // 插入成功cout << "val: " << *(p2.first) << " bool: " << p2.second << endl; // 原容器中已存在1,插入失败// 查找+删除set<int>::iterator it = s.find(9);s.erase(it);s.erase(7);// 使用迭代器逆向打印set中的元素for (auto it = s.rbegin(); it != s.rend(); ++it)cout << *it << " ";cout << endl;// set中值为3的元素出现了几次cout << s.count(3) << endl;
    }
    int main()
    {TestSet();return 0;
    }
    

    运行结果:

    在这里插入图片描述

4.2 map

4.2.1 map 的介绍

英文解释:

在这里插入图片描述

也就是说:

  1. map 是关联容器,它按照特定的次序(按照 key 来比较)存储由键值 key 和值 value 组合而成的元素。

  2. 在 map 中,键值 key 通常用于排序和唯一地标识元素,而值 value 中存储与此键值 key 关联的内容。键值 key 和值 value 的类型可能不同,并且在 map 的内部,key 与 value 通过成员类型 value_type 绑定在一起:pair: typedef pair<const key, T> value_type;

  3. 在内部,map中的元素总是按照键值 key 进行比较排序的。

  4. map 中通过键值访问单个元素的速度通常比 unordered_map 容器慢,但 map 允许根据顺序对元素进行直接迭代(即对 map 中的元素进行迭代时,可以得到一个有序的序列)。

  5. map 支持下标访问符,即在 [] 中放入 key,就可以找到与 key 对应的 value。

  6. map 通常被实现为二叉搜索树(红黑树)。

注意:

  1. map 中的的元素是键值对。

  2. map 中的 key 是唯一的,并且不能修改。

  3. 默认按照小于的方式对 key 进行比较。

  4. map 中的元素如果用迭代器去遍历,可以得到一个有序的序列。

  5. map 的底层为平衡搜索树(红黑树),查找效率为 O ( l o g 2 N ) O(log_2 N) O(log2N)

  6. 支持 [] 操作符,operator[] 中实际进行插入查找。

4.2.2 map 的使用

  1. map的模板参数列表

    在这里插入图片描述

    说明:

    key:键值对中 key 的类型。
    T:键值对中 value 的类型。
    Compare:比较器的类型,map 中的元素是按照 key 来比较的,缺省情况下按照小于来比较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递)。
    Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器。

  2. map 的构造函数

    函数声明功能介绍
    explicit map (const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type());构造空的 map。
    template <class InputIterator>
    map (InputIterator first, InputIterator last, const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type());
    用 [first, last) 区间中的元素构造 map。
    map (const map& x);map 的拷贝构造。
  3. map 的容量操作

    函数名称函数声明功能简介
    emptybool empty ( ) const;检测 map 中的元素是否为空,是返回 true,否则返回 false。
    sizesize_t size() const;返回 map 中有效元素的个数。
  4. map 的元素访问操作

    函数名称函数声明功能简介
    operator[]mapped_type& operator[] (const key_type& k);返回 k 对应的 value。
    atmapped_type& at (const key_type& k);
    const mapped_type& at (const key_type& k) const;
    返回 k 对应的 value。

    区分:

    在元素访问时,有一个与 operator[] 类似的操作 at 函数(该函数不常用),都是通过 key 找到与 key 对应的 value 然后返回其引用,不同的是:当 key 不存在时,operator[] 用默认 value 与 key 构造键值对然后插入,返回该默认 value;at 函数直接抛异常。

  5. map 的修改操作

    函数名称函数声明功能介绍
    insertpair<iterator,bool> insert (const value_type& val);在 map 中插入键值对 val。如果插入成功,返回 <val 位置的迭代器,true>;如果插入失败,说明 val 在 map 中已经存在,返回 <val 位置的迭代器,false>。
    erasevoid erase (iterator position);
    size_t erase (const key_type& k);
    删除 map 中 position 位置上的元素。
    删除 map 中键值为 k 的元素,返回删除的元素的个数(这里只会返回0或1)。
    swapvoid swap (map& x);与 x 交换元素。
    clearvoid clear();将 map 的元素清空。
  6. map 的其它操作

    函数名称函数声明功能介绍
    finditerator find (const key_type& k);
    const_iterator find (const key_type& k) const;
    在 map 中查找 key 为 x 的元素,找到返回该元素位置的迭代器,否则返回 end。
    在 map 中查找 key 为 x 的元素,找到返回该元素位置的 const 迭代器,否则返回 cend。
    countsize_t count (const key_type& k) const;返回 map 中值为 k 的键值在 map 中的个数(这里只会返回0或1)。
  7. map 的用法举例

    代码举例:(相关说明在代码注释中)

    #include <iostream>
    #include <string>
    #include <map>
    using namespace std;
    void TestMap()
    {map<string, string> m;// 向map中插入元素的方式:// 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对m.insert(pair<string, string>("peach", "桃子"));// 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对m.insert(make_pair("banan", "香蕉"));// 借用operator[]向map中插入元素/*operator[]的原理是:用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器operator[]函数最后将insert返回值键值对中的value返回*/// 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引用结果,m["apple"] = "苹果";// key不存在时抛异常//m.at("waterme") = "水蜜桃";cout << m.size() << endl;// 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列for (auto& e : m)cout << e.first << "--->" << e.second << endl;cout << endl;// map中的键值对key一定是唯一的,如果key存在将插入失败auto ret = m.insert(make_pair("peach", "桃色"));if (ret.second)cout << "<peach, 桃色>不在map中, 已经插入" << endl;elsecout << "键值为peach的元素已经存在:" << ret.first->first << "--->"<< ret.first->second << " 插入失败" << endl;// 删除key为"apple"的元素m.erase("apple");if (1 == m.count("apple"))cout << "apple还在" << endl;elsecout << "apple被吃了" << endl;
    }
    int main()
    {TestMap();return 0;
    }
    

    输出结果:

    在这里插入图片描述

4.3 multiset

4.3.1 multiset 的介绍

英文解释:

在这里插入图片描述

也就是说:

  1. multiset 是按照特定顺序存储元素的容器,其中元素是可以重复的。

  2. 在 multiset 中,元素的 value 是其识别符(value 本身就是 key,key 就是 value,类型为 T)。 multiset 元素的值不能在容器中进行修改(因为元素总是 const 的),但可以从容器中插入或删除。

  3. 在内部,multiset 中的元素总是按照其内部比较规则(类型为 Compare)所指示的特定严格弱排序准则进行排序。

  4. multiset 容器通过 key 访问单个元素的速度通常比 unordered_multiset 容器慢,但当使用迭代器遍历时会得到一个有序序列。

  5. multiset 底层结构为二叉搜索树(红黑树)。

注意:

  1. multiset 只存放 value。

  2. multiset 只需要插入 value 即可,不需要构造键值对。

  3. 与 set 的区别是,multiset 中的元素可以重复,set 是中 value 是唯一的。

  4. 使用迭代器对 multiset 中的元素进行遍历,可以得到有序的序列。

  5. multiset 中的元素不能修改。

  6. 在 multiset 中找某个元素,时间复杂度为 O ( l o g 2 N ) O(log_2 N) O(log2N)

  7. multiset 的作用:可以对元素进行排序。

4.3.2 multiset 的使用

此处只简单演示 set 与 multiset 的不同,其他接口接口与 set 相同,可参考 set。

#include <iostream>
using namespace std;
#include <set>
void TestMultiset()
{int array[] = { 2,1,3,9,6,0,5,8,4,7,7,9,3,1,5 };// multiset 中的元素可以重复multiset<int> s(array, array + sizeof(array) / sizeof(array[0]));for (auto& e : s)cout << e << " ";cout << endl;return;
}
int main()
{TestMultiset();return 0;
}

输出结果:

在这里插入图片描述

4.4 multimap

4.4.1 multimap 的介绍

英文解释:

在这里插入图片描述

也就是说:

  1. multimap 是关联式容器,它按照特定的顺序,存储由 key 和 value 映射成的键值对 <key, value>,其中多个键值对之间的 key 是可以重复的。

  2. 在 multimap 中,通常按照 key 排序和唯一地标识元素,而映射的 value 存储与 key 关联的内容。key 和 value 的类型可能不同,通过 multimap 内部的成员类型 value_type 组合在一起,value_type是组合key和value的键值对:typedef pair<const Key, T> value_type;

  3. 在内部,multimap 中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对 key 进行排序的。

  4. multimap 通过 key 访问单个元素的速度通常比 unordered_multimap 容器慢,但是使用迭代器直接遍历 multimap 中的元素可以得到关于 key 有序的序列。

  5. multimap 在底层用二叉搜索树(红黑树)来实现。

注意:

  1. multimap 中的 key 是可以重复的。

  2. multimap 中的元素默认将 key 按照小于来比较。

  3. multimap 中没有重载 operator[] 操作。

  4. 使用时与map包含的头文件相同。

4.4.2 multimap 的使用

multimap 中的接口可以参考 map,功能都是类似的。不同点就是 multimap 中没有 operator[] ,key 值可以重复。此处只简单演示一下不同点。

#include <iostream>
using namespace std;
#include <map>
void TestMultimap()
{multimap<string, string> m;m.insert(make_pair("sort", "种类"));m.insert(make_pair("sort", "排序"));m.insert(make_pair("left", "左边"));m.insert(make_pair("left", "离开"));m.insert(make_pair("apple", "苹果"));for (auto& e : m)cout << e.first << "--->" << e.second << endl;return;
}
int main()
{TestMultimap();return 0;
}

输出结果:

在这里插入图片描述

5. 底层结构

5.1 AVL 树

5.1.1 AVL 树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii 和 E.M.Landis 在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是 AVL 树。

  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)。

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

5.1.2 AVL 树节点的定义

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};

AVLTreeNode 中的成员包括:

  • _left:指向左子节点的指针。
  • _right:指向右子节点的指针。
  • _parent:指向父节点的指针。
  • _kv:存储键值对的 pair 对象,其中键的类型为 K,值的类型为 V
  • _bf:平衡因子,用于表示节点的平衡状态。

5.1.3 AVL 树的插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么 AVL 树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点。

  2. 调整节点的平衡因子。

代码实现:(相关说明在代码注释中)

bool Insert(const pair<K, V>& kv)
{// 1. 先按照二叉搜索树的规则将节点插入到AVL树中if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,// 并检测是否破坏了AVL树的平衡性/*cur插入后,parent的平衡因子一定需要调整,在插入之前,parent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可此时:parent的平衡因子可能有三种情况:0,正负1, 正负21. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以parent为根的树的高度增加,需要继续向上更新3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理,具体细节请看后文*/while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;
}

5.1.4 AVL 树的旋转

如果在一棵原本是平衡的 AVL 树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL 树的旋转分为四种:

  1. 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

代码实现:(相关说明在代码注释中)

/*
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,
右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,
而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,
更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
*/       
void RotateR(Node* parent)
{// subL: parent的左孩子// subLR: parent左孩子的右孩子Node* subL = parent->_left;Node* subLR = subL->_right;// 30的右孩子作为双亲的左孩子parent->_left = subLR;// 如果60的左孩子的右孩子存在,更新节点双亲if (subLR)subLR->_parent = parent;// 60作为30的右孩子subL->_right = parent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲Node* grandparent = parent->_parent;// 更新60的双亲parent->_parent = subL;// 如果60是根节点,更新指向根节点的指针if (_root == parent){_root = subL;// 更新30的双亲subL->_parent = nullptr;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if (grandparent->_left == parent){grandparent->_left = subL;}else{grandparent->_right = subL;}// 更新30的双亲subL->_parent = grandparent;}// 根据调整后的结构更新部分节点的平衡因子subL->_bf = parent->_bf = 0;
}
  1. 新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

实现及情况考虑可参考右单旋。代码会在最后整体给出。

  1. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

代码实现:(相关说明已在代码注释中)

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;// 旋转之前,保存subLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = subLR->_bf;// 先对30进行左单旋RotateL(subL);// 再对90进行右单旋RotateR(parent);if (0 == bf){// subLR自己就是新增parent->_bf = subL->_bf = subLR->_bf = 0;}else if (-1 == bf){// subLR的左子树新增parent->_bf = 1;subLR->_bf = 0;subL->_bf = 0;}else if (1 == bf){// subLR的右子树新增parent->_bf = 0;subLR->_bf = 0;subL->_bf = -1;}else{assert(false);}
}
  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

参考右左双旋。代码会在最后整体给出。

总结:

假如以 parent 为根的子树不平衡,即 parent 的平衡因子为2或者-2,分以下情况考虑

  1. parent 的平衡因子为2,说明 parent 的右子树高,设 parent 的右子树的根为 subR:
  • 当 subR 的平衡因子为1时,执行左单旋。
  • 当 subR 的平衡因子为-1时,执行右左双旋。
  1. parent 的平衡因子为-2,说明 parent 的左子树高,设 parent 的左子树的根为 subL:
  • 当 subL 的平衡因子为-1是,执行右单旋。
  • 当 subL 的平衡因子为1时,执行左右双旋。

旋转完成后,原 parent 为根的子树个高度降低,已经平衡,不需要再向上更新。

5.1.5 AVL 树的验证

AVL 树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证 AVL 树,可以分两步:

  1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。

  1. 验证其为平衡树

每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)节点的平衡因子是否计算正确。

代码实现:(相关说明在代码注释中)

bool _IsBalance(Node* root)
{// 空树也是AVL树if (root == nullptr)return true;// 计算root节点的平衡因子:即root左右子树的高度差int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);// 如果计算出的平衡因子与root的平衡因子不相等,则一定不是AVL树if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}// root平衡因子的绝对值超过1,则一定不是AVL树// root的左和右如果都是AVL树,则该树一定是AVL树return abs(rightHeight - leftHeight) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);
}bool IsBalance()
{return _IsBalance(_root);
}

5.1.6 AVL 树的删除(了解)

因为 AVL 树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

具体实现可参考:平衡二叉树。

5.1.7 AVL 树全部代码

#pragma once
#include<assert.h>template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if(subRL)subRL->_parent = parent;Node* grandparent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (grandparent->_left == parent){grandparent->_left = subR;}else{grandparent->_right = subR;}subR->_parent = grandparent;}subR->_bf = parent->_bf = 0;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* grandparent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (grandparent->_left == parent){grandparent->_left = subL;}else{grandparent->_right = subL;}subL->_parent = grandparent;}subL->_bf = parent->_bf = 0;}void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (0 == bf){// subRL自己就是新增parent->_bf = subR->_bf = subRL->_bf = 0;}else if (-1 == bf){// subRL的左子树新增parent->_bf = 0;subRL->_bf = 0;subR->_bf = 1;}else if (1 == bf){// subRL的右子树新增parent->_bf = -1;subRL->_bf = 0;subR->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(subL);RotateR(parent);if (0 == bf){// subLR自己就是新增parent->_bf = subL->_bf = subLR->_bf = 0;}else if (-1 == bf){// subLR的左子树新增parent->_bf = 1;subLR->_bf = 0;subL->_bf = 0;}else if (1 == bf){// subLR的右子树新增parent->_bf = 0;subLR->_bf = 0;subL->_bf = -1;}else{assert(false);}}void InOrder(){_InOrder(_root);cout << endl;}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " ";_InOrder(root->_right);}bool IsBalance(){return _IsBalance(_root);}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool _IsBalance(Node* root){if (root == nullptr)return true;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return abs(rightHeight - leftHeight) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);}private:Node* _root = nullptr;
};

5.1.8 AVL 树的性能

AVL 树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对 AVL 树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑 AVL 树,但一个结构经常修改,就不太适合。

5.2 红黑树

5.2.1 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是 Red 或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

如图所示:

在这里插入图片描述

5.2.2 红黑树的性质

  1. 每个结点不是红色就是黑色。

  2. 根节点是黑色的。

  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的。

  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点。

  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。

5.2.3 红黑树节点的定义

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};

RBTreeNode 中的成员包括:

  • _left:指向左子节点的指针。
  • _right:指向右子节点的指针。
  • _parent:指向父节点的指针。
  • _kv:存储键值对的 pair 对象,其中键的类型为 K,值的类型为 V
  • _col:节点的颜色,用枚举类型 Colour 表示,可能的取值为 REDBLACK

构造函数默认将 _col 初始化为 RED。

5.2.4 红黑树的插入

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点。

  2. 检测新节点插入后,红黑树的性质是否造到破坏。

因为新节点的默认颜色是红色,因此,如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur 为当前节点,p 为父节点,g 为祖父节点,u 为叔叔节点。

  • 情况一:cur 为红,p 为红,g 为黑,u 存在且为红。

    在这里插入图片描述

    解决方式:将 p,u 改为黑,g 改为红,然后把 g 当成 cur,继续向上调整。

  • 情况二:cur 为红,p 为红,g 为黑,u 不存在或者 u 存在且为黑。

    在这里插入图片描述

    解决方式:p 为 g 的左孩子,cur 为 p 的左孩子,则针对 p 进行右单旋转;相反,p 为 g 的右孩子,cur 为 p 的右孩子,则针对 p 进行左单旋转。p,g 变色,p 变黑,g 变红。

  • 情况三:cur 为红,p 为红,g 为黑,u 不存在或者 u 存在且为黑。

    在这里插入图片描述

    解决方式:p 为 g 的左孩子,cur 为 p 的右孩子,则针对 p 进行左单旋转;相反,p 为 g 的右孩子,cur 为 p 的左孩子,则针对 p 进行右单旋转,此时转换成了情况2。

针对每种情况进行相应的处理即可。

代码实现:(相关说明在代码注释中)

bool Insert(const pair<K, V>& kv)
{// 1. 先按照二叉搜索树的规则将节点插入到红黑树中if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}// 2. 检测新节点插入后,红黑树的性质是否造到破坏。while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (parent == grandparent->_left){//     g//   p   u// cNode* uncle = grandparent->_right;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandparent->_col = RED;// 继续往上更新处理cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_left){// 单旋//     g//   p// cRotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else{// 双旋//     g//   p//     cRotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}else  // parent == grandparent->_right{//     g//   u   p //          cNode* uncle = grandparent->_left;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandparent->_col = RED;// 继续往上处理cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_right){// 单旋//  g//    p//      cRotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else{// 双旋//    g//       p //     cRotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}}_root->_col = BLACK;return true;
}

5.2.5 红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)。

  2. 检测其是否满足红黑树的性质。

代码实现:(相关说明在代码注释中)

bool Check(Node* root, int blacknum, const int refVal)
{//走到 null 之后,判断blacknum和refVal是否相等if (root == nullptr){if (blacknum != refVal){cout << "存在黑色节点数量不相等的路径" << endl;return false;}return true;}// 检测当前节点与其双亲是否都为红色if (root->_col == RED && root->_parent->_col == RED){cout << "有连续的红色节点" << endl;return false;}// 统计黑色节点的个数if (root->_col == BLACK){++blacknum;}return Check(root->_left, blacknum, refVal)&& Check(root->_right, blacknum, refVal);
}
bool IsBalance()
{// 空树也是红黑树if (_root == nullptr)return true;// 检测根节点是否满足情况if (_root->_col == RED){cout << "根节点必须为黑色" << endl;return false;}// 获取任意一条路径中黑色节点的个数int refVal = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refVal;}cur = cur->_left;}// 检测是否满足红黑树的性质,blacknum用来记录路径中黑色节点的个数int blacknum = 0;return Check(_root, blacknum, refVal);
}

5.2.6 红黑树的删除(了解)

红黑树的删除本节不做讲解,具体实现可参考:红黑树。

5.2.7 红黑树全部代码

#pragma once
#include <assert.h>enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (parent == grandparent->_left){//     g//   p   u// cNode* uncle = grandparent->_right;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandparent->_col = RED;// 继续往上更新处理cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_left){// 单旋//     g//   p// cRotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else{// 双旋//     g//   p//     cRotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}else  // parent == grandparent->_right{//     g//   u   p //          cNode* uncle = grandparent->_left;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandparent->_col = RED;// 继续往上处理cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_right){// 单旋//  g//    p//      cRotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else{// 双旋//    g//       p //     cRotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* grandparent = parent->_parent;parent->_parent = subR;if (subRL)subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (grandparent->_left == parent){grandparent->_left = subR;}else{grandparent->_right = subR;}subR->_parent = grandparent;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* grandparent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (grandparent->_left == parent){grandparent->_left = subL;}else{grandparent->_right = subL;}subL->_parent = grandparent;}}void InOrder(){_InOrder(_root);cout << endl;}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " ";_InOrder(root->_right);}bool Check(Node* root, int blacknum, const int refVal){if (root == nullptr){if (blacknum != refVal){cout << "存在黑色节点数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "有连续的红色节点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return Check(root->_left, blacknum, refVal)&& Check(root->_right, blacknum, refVal);}bool IsBalance(){if (_root == nullptr)return true;if (_root->_col == RED){cout << "根节点必须为黑色" << endl;return false;}// 参考值int refVal = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refVal;}cur = cur->_left;}int blacknum = 0;return Check(_root, blacknum, refVal);}int Height(){return _Height(_root);}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}size_t Size(){return _Size(_root);}size_t _Size(Node* root){if (root == NULL)return 0;return _Size(root->_left)+ _Size(root->_right) + 1;}bool Empty(){return _root == nullptr;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}private:Node* _root = nullptr;
};

5.2.8 红黑树与 AVL 树的比较

红黑树和 AVL 树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

5.3 红黑树模拟实现 STL 中的 map 与 set

5.3.1 迭代器实现

template<class T>
struct __TreeIterator
{typedef RBTreeNode<T> Node;typedef __TreeIterator<T> Self;Node* _node;__TreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator--(){if (_node->_left){// 上一个就是左子树的最右节点Node* cur = _node->_left;while (cur->_right){cur = cur->_right;}_node = cur;}else{// 左为空,找孩子是父亲右的那个父亲结点Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = parent->_parent;}assert(parent);_node = parent;}return *this;}Self& operator++(){assert(_node);if (_node->_right){// 下一个就是右子树的最左节点Node* cur = _node->_right;while (cur->_left){cur = cur->_left;}_node = cur;}else{// 右为空,找孩子是父亲左的那个父亲结点Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operator==(const Self& s){return _node == s._node;}
};

5.3.2 改造红黑树

为了方便封装 map 和 set,我们插入了迭代器的操作,然后将之前节点的模板参数<K, V>改成<T>,将红黑树的模板参数<K, V>改成<K, T, KeyOfT>,解释如下:

  • k:key 的类型。
  • T:如果是 map,则为 pair<K, V>;如果是 set,则为 k。
  • KeyOfT:通过 T 来获取 key 的一个仿函数类。

改造后代码实现:

// 文件名:RBTree.h
enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Colour _col;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef __TreeIterator<T> iterator;iterator begin(){Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return iterator(cur);}iterator end(){return iterator(nullptr);}pair<iterator, bool> Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root), true);}Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return make_pair(iterator(cur), false);}}cur = new Node(data);Node* newnode = cur;cur->_col = RED;if (kot(parent->_data) < kot(data)){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (parent == grandparent->_left){//     g//   p   u// cNode* uncle = grandparent->_right;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandparent->_col = RED;// 继续往上更新处理cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_left){// 单旋//     g//   p// cRotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else{// 双旋//     g//   p//     cRotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}else  // parent == grandparent->_right{//     g//   u   p //          cNode* uncle = grandparent->_left;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandparent->_col = RED;// 继续往上处理cur = grandparent;parent = cur->_parent;}else{if (cur == parent->_right){// 单旋//  g//    p//      cRotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else{// 双旋//    g//       p //     cRotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}break;}}}_root->_col = BLACK;return make_pair(iterator(newnode), true);}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* grandparent = parent->_parent;parent->_parent = subR;if (subRL)subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (grandparent->_left == parent){grandparent->_left = subR;}else{grandparent->_right = subR;}subR->_parent = grandparent;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* grandparent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (grandparent->_left == parent){grandparent->_left = subL;}else{grandparent->_right = subL;}subL->_parent = grandparent;}}void InOrder(){_InOrder(_root);cout << endl;}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << kot(root->_data) << " ";_InOrder(root->_right);}bool Check(Node* root, int blacknum, const int refVal){if (root == nullptr){if (blacknum != refVal){cout << "存在黑色节点数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "有连续的红色节点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return Check(root->_left, blacknum, refVal)&& Check(root->_right, blacknum, refVal);}bool IsBalance(){if (_root == nullptr)return true;if (_root->_col == RED)return false;// 参考值int refVal = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refVal;}cur = cur->_left;}int blacknum = 0;return Check(_root, blacknum, refVal);}int Height(){return _Height(_root);}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}size_t Size(){return _Size(_root);}size_t _Size(Node* root){if (root == NULL)return 0;return _Size(root->_left)+ _Size(root->_right) + 1;}bool Empty(){return _root == nullptr;}Node* Find(const K& key){Node* cur = _root;while (cur){if (kot(cur->_data) < key){cur = cur->_right;}else if (kot(cur->_data) > key){cur = cur->_left;}else{return cur;}}return nullptr;}private:Node* _root = nullptr;KeyOfT kot;
};

5.3.3 map 的模拟实现

map 的底层结构就是红黑树,因此在 map 中直接封装一棵红黑树,然后将其接口包装下即可。

代码实现如下:

#pragma once
#include "RBTree.h"namespace my_map
{template<class K, class V>class map{public:struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};// 对类模板取内嵌类型,加typename告诉编译器这里是类型typedef typename RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.Insert(kv);}size_t size(){return _t.Size();}bool empty(){return _t.Empty();}iterator find(const K& key){return iterator(_t.Find(key));}private:RBTree<K, pair<K, V>, MapKeyOfT> _t;};
}

5.3.4 set 的模拟实现

set 的底层为红黑树,因此只需在 set 内部封装一棵红黑树,然后将其接口包装下即可。

代码实现如下:

#pragma once
#include"RBTree.h"namespace my_set
{template<class K>class set{public:struct SetKeyOfT{const K& operator()(const K& key){return key;}};// 对类模板取内嵌类型,加typename告诉编译器这里是类型typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}pair<iterator, bool> insert(const K& key){return _t.Insert(key);}size_t size(){return _t.Size;}bool empty(){return _t.Empty();}iterator find(const K& key){return iterator(_t.Find(key));}private:RBTree<K, K, SetKeyOfT> _t;};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/664438.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Latex学习记录

目录 1.Latex各种箭头符号总结 2.[Latex]公式编辑&#xff0c;编号、对齐 3.Latex公式编号: 多行公式多编号&#xff0c;多行公式单编号 4.LaTex中输入空格以及换行 1.Latex各种箭头符号总结 箭头符号 - ➚ (piliapp.com)https://cn.piliapp.com/symbol/arrow/Latex各种箭头…

Flutter 开发3:创建第一个Flutter应用

Step 1: 安装Flutter 1.1 下载Flutter SDK 首先&#xff0c;你需要访问Flutter官方网站下载最新的Flutter SDK。选择适合你操作系统的安装包。 $ cd ~/development $ unzip ~/Downloads/flutter_macos_2.2.3-stable.zip1.2 更新环境变量 接下来&#xff0c;你需要将Flutter…

网络异常案例四_IP异常

问题现象 终端设备离线&#xff0c;现场根据设备ip&#xff0c;ping不通。查看路由器。 同一个路由器显示的终端设备&#xff08;走同一个wifi模块接入&#xff09;&#xff0c;包含不同网段的ip。 现场是基于三层的无线漫游&#xff0c;多个路由器wifi配置了相同的ssid信息&a…

springBoot静态资源文件夹以及文件夹之间的优先级

1、springBoot静态资源文件夹&#xff0c;系统默认路径&#xff0c;优先级由大到小 classpath:/META-INF/resources/ classpath:/resources/ classpath:/static/ classpath:/public/ 比如当static文件夹中和public文件夹中都存在a.html 浏览器访问localhost:8080/a.html将访问…

ref和reactive

看尤雨溪说&#xff1a;为什么Vue3 中应该使用 Ref 而不是 Reactive&#xff1f;

pintia6-2符号函数 6-1两点距离

pintia的函数题&#xff0c;只需要把函数写上去就可以了&#xff0c;6-2函数题比较简单&#xff0c;三个if就可以解决: 6-1则套用数学公式即可&#xff0c;注意把函数名复制粘贴过去&#xff0c;以免抄错

网络加速工具

注册之后, 下载软件, 可免费试用4小时. 亲测可用, 网速还是很不错的 点击以下官网地址进行注册 https://tgjkdjfk.top/a.php?alavBTtF8UWAySC 或者 https://doveee.com/aff.php?alavBTtF8UWAySC 注册登录之后的个人中心 电脑端安装之后的界面如下 电脑端(macOS Windows)和手…

Django的web框架Django Rest_Framework精讲(二)

文章目录 1.自定义校验功能&#xff08;1&#xff09;validators&#xff08;2&#xff09;局部钩子&#xff1a;单字段校验&#xff08;3&#xff09;全局钩子&#xff1a;多字段校验 2.raise_exception 参数3.context参数4.反序列化校验后保存&#xff0c;新增和更新数据&…

起心动念 | 生成式 AI 开发实践系列的开端

生成式 AI 和大模型的技术变革力量&#xff0c;正在逐渐影响着我们当下这个时代&#xff0c;全球各行各业都呈现百舸争流、万象更新的趋势。在 2023 年&#xff0c;我们通过各种面向开发者的活动&#xff0c;收集到了大量开发者关于基于生成式 AI 的开发内容需求和建议反馈。开…

Boosting semantic human matting with coarse annotations

前向推理在modelscope中开源了&#xff0c;但是训练没开源&#xff0c;且是基于TensorFlow的&#xff0c;复现起来是比较麻烦的。 1.Introduction 分割技术主要集中在像素级二元分类&#xff0c;抠图被建模为前景图像F和背景图像B的加权融合&#xff0c;大多数matte方法采用指…

HiSilicon352 android9.0 开机视频调试分析

一&#xff0c;开机视频概念 开机广告是在系统开机后实现播放视频功能。 海思Android解决方案在原生Android基础上&#xff0c;增加了开机视频模块&#xff0c;可在开机过程中播放视频文件&#xff0c;使用户更好的体验系统开机过程。 二&#xff0c;模块结构 1. 海思自研开机…

Linux 高并发服务器

多进程并发服务器 使用多进程并发服务器时要考虑以下几点&#xff1a; 父进程最大文件描述个数(父进程中需要close关闭accept返回的新文件描述符)系统内创建进程个数(与内存大小相关)进程创建过多是否降低整体服务性能(进程调度) server /* server.c */ #include <stdio…

IDEA反编译Jar包

反编译步骤 使用IDEA安装decompiler插件 找到decompiler插件文件夹所在位置&#xff08;IDEA安装路径/plugins/java-decompiler/lib &#xff09;&#xff0c;将需要反编译的jar包放到decompiler插件文件夹下&#xff0c;并创建一个空的文件夹&#xff0c;用来存放反编译后的…

电子信息考博目标院校

电子信息考博 1.目标院校 第一志愿 武汉大学 211计算机学院(2024年度) 085400电子信息 新一代信息通信技术&#xff08;卓工博士专项&#xff09; 外语水平考试科目 1101英语 卓工博士专项计划详见专项简章 212电子信息学院(2024年度) 085400电子信息 新一代信息通信…

AJAX-常用请求方法和数据提交

常用请求方法 请求方法&#xff1a;对服务器资源&#xff0c;要执行的操作 axios请求配置 url&#xff1a;请求的URL网址 method&#xff1a;请求的方法&#xff0c;如果是GET可以省略&#xff1b;不用区分大小写 data&#xff1a;提交数据 axios({url:目标资源地址,method…

【C语言】异常处理 | assert函数 | errno错误码

文章目录 C语言传统的处理错误的方式1. 终止程序&#xff08;例如使用 assert&#xff09;2. 返回/设置错误码手动实现C语言库函数内置的错误码Linux系统调用内置的错误码 C语言传统的处理错误的方式 C语言传统的处理错误的方式主要包括assert终止程序和返回或设置错误码两种方…

Django的web框架Django Rest_Framework精讲(三)

文章目录 1.DRF视图1) 视图基类1.GET请求2.POST请求&#xff0c;添加单条记录3.更新单条记录put方法4.DELETE请求 2) GenericAPIView[通用视图类] 2.视图类中使用多个序列化器类的方法3.基于视图扩展类的视图接口1&#xff09;ListModelMixin2&#xff09;CreateModelMixin3&am…

如何远程操控vm虚拟机(finalshell版)

你是否因为虚拟机命令行操作不便而头疼&#xff1f;是否因为难以复制粘贴而烦恼&#xff1f;是否因为无法快速上传文件而烦躁&#xff1f; 别急&#xff01;现在有一个简单便捷的软件能够实现上述你所述说的所有烦恼&#xff0c;请听我细细道来~ 一、查看虚拟机的ip地址 a.首…

python-分享篇-GUI界面开发-PyQt5-窗体代码与逻辑代码分离

代码 # _*_ coding:utf-8 _*_ # 文件名称&#xff1a;LoginWindows.py # 开发工具&#xff1a;PyCharmimport sys # 导入操作系统模块from PyQt5.QtCore import QCoreApplication # 导入PyQt5的QtCore模块 from PyQt5.QtWidgets import QApplication,QMainWindow # 导入P…

【game——关机程序】

程序运行后&#xff0c;会在1分钟内关机&#xff0c;用户需要输入&#xff1a;lalala&#xff0c;才能停止电脑关机。 电脑内有操作命令符&#xff0c;可以实现关机&#xff1a; 最后按一下回车&#xff1a; #include<stdio.h> #include<stdlib.h> #include<s…