起心动念 | 生成式 AI 开发实践系列的开端

生成式 AI 和大模型的技术变革力量,正在逐渐影响着我们当下这个时代,全球各行各业都呈现百舸争流、万象更新的趋势。在 2023 年,我们通过各种面向开发者的活动,收集到了大量开发者关于基于生成式 AI 的开发内容需求和建议反馈。开发者们都期待我们在 2024 年推出更多关于生成式 AI 开发实践的系列内容。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!

根据来自于过去一年的开发者的需求建议上的深度思考,我们确定了以下三个围绕生成式 AI 开发实践的内容系列,希望在 2024 年里,对开发者们在生成式 AI 应用领域的开发实践有所帮助:

  • 构建生成式 AI 应用开发实践系列

  • 开源大语言模型的优化实践系列

  • 亚马逊云科技上的生成式 AI 开发实践系列

构建生成式 AI 应用开发实践系列

在亚马逊云科技 re:Invent 2023 以及之后的 reCap 巡展中,细心的开发者们也许已经发现有一个很有趣的动手实验:

开发一款可部署的基于大语言模型的字谜游戏。

该款游戏使用了文生图模型为玩家提供一个未知的提示词,玩家需要根据模型生成的图像来猜测该提示词,来完成游戏。该动手实验完整地展示了如何在亚马逊云科技上完整构建生成式 AI 应用程序。

这款游戏的后端使用了三个大模型,包括:

  • 文本到图像的模型

  • 文本嵌入(Text Embedding)模型

  • 文本生成模型

整个游戏的主要拓扑结构图如下所示:

image.png

本系列计划用 3-5 篇博客的篇幅,完整阐述如何构建基于大模型的生成式 AI 应用实践,来帮助开发者们全面了解构建 生成式 AI 应用开发的完整流程,包括:构建前端程序、构建后端程序、以及代码面向生产环境的持续集成和持续部署(CI/CD)等方面内容:

  • 生成式 AI 应用设计概述

  • 文本到图像模型的设计

  • 嵌入模型的设计

  • 文本生成模型的设计

  • 生成式 AI 应用 CI/CD 实践

开源大语言模型的优化实践系列

该系列的策划起源自我们在 2023 年亚马逊云科技 re:Invent 上的演讲分享——使用 Amazon SageMaker 优化开源大语言模型的部署和微调。

  • 《使用 Amazon SageMaker 优化开源大语言模型的部署和微调》 演示文稿下载:https://d1.awsstatic.com/events/Summits/reinvent2023/BOA402\_Open-source-LLM-optimization-with-Amazon-SageMaker.pdf?trk=cndc-detail

在技术分享中,我们和世界各地的开发者们一起探讨了大语言模型的模型部署和微调优化领域,包括:模型编译、模型压缩、模型分布式训练、模型推理批处理等方面的行业最新论文和发展趋势,以及通过两个实际代码展示了 Amazon SageMaker 如何高效简化大语言模型的部署和微调流程。如下图所示:

image.png

分享结束后,很多开发者和我们沟通联系,希望我们可以把这个话题延展地更深入一些,因为和开源大模型优化相关的很多子领域,在过去一年行业进步迅速,很多优秀的论文和想法脱颖而出。因此,我规划了这一系列,通过 4-6 篇博客来分享我在开源大语言模型优化领域的心得和体会,话题包括:

  • 模型编译

  • 模型压缩

  • 模型分布式训练

  • 模型部署

  • 模型推理优化

在亚马逊云科技上的生成式 AI 开发实践系列

从 2023 年开始,在生成式 AI 领域涌现了很多优秀的书籍和在线课程。为帮助开发者可以系统了了解如何利用亚马逊云科技在云基础设施、数据存储、数据处理以及数据分析等诸多方面的优势,我们特别规划了这个系列的内容。

我们希望在 2024 年里通过 8-12 篇技术博客和大家逐步分享行业的最新进展和在亚马逊云科技上的开发实践,主要内容规划如下:

  • 生成式 AI 用例、基础知识、项目生命周期

  • 提示工程和上下文学习

  • 大型语言基础模型

  • 模型量化和模型的分布式训练

  • 模型微调和模型评估

  • 参数高效微调(PEFT)

  • 使用 RLHF 进行强化学习微调

  • 优化和部署 生成式 应用程序

  • 检索增强生成 (RAG) 和代理

  • 多模态基础模型概述

  • 使用 Stable Diffusion 模型进行用户可控的模型生成和微调

  • 使用 Amazon Bedrock 的生成式 AI 开发实践

敬请期待!

特别推荐

除了今年的内容分享预告,我也希望给开发者们推荐以下学习资源,与开发者共勉。

书籍《Generative AI on Amazon Web Services》

难度:初级/中级

该书的作者为来自亚马逊云科技的同事 Chris Fregly、Antje Barth 和 Shelbee Eigenbrode 等。 

书籍主要内容包括了:生成式 AI 的生命周期,包括用例定义、模型选择、模型微调、检索增强生成、通过人类反馈的强化学习以及模型量化、优化和部署等。如果开发者计划利用亚马逊云科技的诸多服务,在云端设计和开发生成式 AI 的应用的话,非常推荐此书。

书籍链接:https://www\.amazon.com/\_/dp/1098159225?trk=cndc-detail

在线课程《Generative AI with Large Language Models》

技术难度:中级

吴恩达创办的 DeepLearning.AI 一直在提供各种面向 AI 领域的精品课程。而在大语言模型领域,笔者非常推荐 DeepLearning.AI 与亚马逊云科技合作推出这门在线课程。

这门在线课程的主要内容是讲授生成式 AI 的工作原理,以及如何部署面向真实世界应用的生成式 AI 模型。这门课的对象主要是针对中等水平的生成式 AI 开发人员,所以需要有一定的编程基础并且对机器学习有一定的了解。此外,官方建议课程的学习时间是三周,也是一个比较长的学习周期。

在线课程链接:https://www\.coursera.org/learn/generative-ai-with-llms?trk=cndc-detail

在线课程《Hands-on Machine Learning with Amazon Web Services and NVIDIA》

技术难度:中级/高级

该在线课程是 DeepLearning.AI 与亚马逊云科技合作的又一重要课程,专为数据科学家和开发人员等 ML 实践者设计。课程要求注册课程的开发者,具有机器学习工作流程的基础知识。

在该课程中,开发者将了解如何让使用 Amazon SageMaker 和 NVIDIA GPU 加速的 Amazon EC2 实例构建、训练和部署可扩展机器学习模型的实践经验。

课程首先概述了 Amazon SageMaker 和 NVIDIA GPU。然后指导开发者通过运行由 GPU 驱动的 Amazon SageMaker 笔记本实例进行实践操作。学习内容包括:如何准备用于模型训练的数据集、构建模型、执行模型训练以及部署和优化 ML 模型等生成式 AI 模型训练的完整流程。

在线课程链接:https://www\.coursera.org/learn/machine-learning-aws-nvidia?trk=cndc-detail

最后,祝福各位开发者龙年新年快乐,阖家幸福,万事如意!

文章来源:起心动念 | 生成式 AI 开发实践系列的开端

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/664421.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Boosting semantic human matting with coarse annotations

前向推理在modelscope中开源了,但是训练没开源,且是基于TensorFlow的,复现起来是比较麻烦的。 1.Introduction 分割技术主要集中在像素级二元分类,抠图被建模为前景图像F和背景图像B的加权融合,大多数matte方法采用指…

HiSilicon352 android9.0 开机视频调试分析

一,开机视频概念 开机广告是在系统开机后实现播放视频功能。 海思Android解决方案在原生Android基础上,增加了开机视频模块,可在开机过程中播放视频文件,使用户更好的体验系统开机过程。 二,模块结构 1. 海思自研开机…

Linux 高并发服务器

多进程并发服务器 使用多进程并发服务器时要考虑以下几点&#xff1a; 父进程最大文件描述个数(父进程中需要close关闭accept返回的新文件描述符)系统内创建进程个数(与内存大小相关)进程创建过多是否降低整体服务性能(进程调度) server /* server.c */ #include <stdio…

IDEA反编译Jar包

反编译步骤 使用IDEA安装decompiler插件 找到decompiler插件文件夹所在位置&#xff08;IDEA安装路径/plugins/java-decompiler/lib &#xff09;&#xff0c;将需要反编译的jar包放到decompiler插件文件夹下&#xff0c;并创建一个空的文件夹&#xff0c;用来存放反编译后的…

电子信息考博目标院校

电子信息考博 1.目标院校 第一志愿 武汉大学 211计算机学院(2024年度) 085400电子信息 新一代信息通信技术&#xff08;卓工博士专项&#xff09; 外语水平考试科目 1101英语 卓工博士专项计划详见专项简章 212电子信息学院(2024年度) 085400电子信息 新一代信息通信…

AJAX-常用请求方法和数据提交

常用请求方法 请求方法&#xff1a;对服务器资源&#xff0c;要执行的操作 axios请求配置 url&#xff1a;请求的URL网址 method&#xff1a;请求的方法&#xff0c;如果是GET可以省略&#xff1b;不用区分大小写 data&#xff1a;提交数据 axios({url:目标资源地址,method…

【C语言】异常处理 | assert函数 | errno错误码

文章目录 C语言传统的处理错误的方式1. 终止程序&#xff08;例如使用 assert&#xff09;2. 返回/设置错误码手动实现C语言库函数内置的错误码Linux系统调用内置的错误码 C语言传统的处理错误的方式 C语言传统的处理错误的方式主要包括assert终止程序和返回或设置错误码两种方…

Django的web框架Django Rest_Framework精讲(三)

文章目录 1.DRF视图1) 视图基类1.GET请求2.POST请求&#xff0c;添加单条记录3.更新单条记录put方法4.DELETE请求 2) GenericAPIView[通用视图类] 2.视图类中使用多个序列化器类的方法3.基于视图扩展类的视图接口1&#xff09;ListModelMixin2&#xff09;CreateModelMixin3&am…

如何远程操控vm虚拟机(finalshell版)

你是否因为虚拟机命令行操作不便而头疼&#xff1f;是否因为难以复制粘贴而烦恼&#xff1f;是否因为无法快速上传文件而烦躁&#xff1f; 别急&#xff01;现在有一个简单便捷的软件能够实现上述你所述说的所有烦恼&#xff0c;请听我细细道来~ 一、查看虚拟机的ip地址 a.首…

python-分享篇-GUI界面开发-PyQt5-窗体代码与逻辑代码分离

代码 # _*_ coding:utf-8 _*_ # 文件名称&#xff1a;LoginWindows.py # 开发工具&#xff1a;PyCharmimport sys # 导入操作系统模块from PyQt5.QtCore import QCoreApplication # 导入PyQt5的QtCore模块 from PyQt5.QtWidgets import QApplication,QMainWindow # 导入P…

【game——关机程序】

程序运行后&#xff0c;会在1分钟内关机&#xff0c;用户需要输入&#xff1a;lalala&#xff0c;才能停止电脑关机。 电脑内有操作命令符&#xff0c;可以实现关机&#xff1a; 最后按一下回车&#xff1a; #include<stdio.h> #include<stdlib.h> #include<s…

分类预测 | Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别

分类预测 | Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别 目录 分类预测 | Matlab实现GAF-PCNN-MATT格拉姆角场和双通道PCNN融合多头注意力机制的分类预测/故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现G…

【Crypto | CTF】BUUCTF Alice与Bob1

天命&#xff1a;比较简单的题目 先用Python生成一个脚本&#xff0c;分解两个素数 def prime_factors(n):"""分解给定整数n的质因数。返回一个列表&#xff0c;其中包含n的所有质因数。"""# 初始化一个空列表来存储质因数factors []# 从2开始…

十、Qt三维图表

一、Data Visualization模块概述 Data Visualization的三维显示功能主要有三种三维图形来实现&#xff0c;三各类的父类都是QAbstract3DGraph&#xff0c;从QWindow继承而来。这三类分别是&#xff1a;三维柱状图Q3DBar三维空间散点Q3DScatter三维曲面Q3DSurface 1、相关类的…

QSqlRelationalTableModel 关系表格模型

一、 1.1 QSqlRelationalTableModel继承自QSqlTableModel&#xff0c;并且对其进行了扩展&#xff0c;提供了对外键的支持。一个外键就是一个表中的一个字段 和 其他表中的主键字段之间的一对一的映射。例如&#xff0c;“studInfo”表中的departID字段对应的是“departments…

计算机视觉-PCV包、Vlfeat库、Graphviz库的下载安装配置及问题解决(使用anaconda3 python 3.8.5)

目录 一、PCV包配置 二、Vlfeat配置 三、在PCV包的sift.py文件中对路径进行修改 四、以上步骤所需注意的错误 五、Graphviz配置 一、PCV包配置 1.下载PCV包,点开网址直接下载安装包(不用解压),下载之后将安装包放在任意目录位置https://codeload.github.com/Li-Shu14…

wasm 在web中最小胶水代码; 报错Imports argument must be present and must be an object

加载和运行 WebAssembly 代码 我试过了没成功&#xff0c;代码裁剪有点严重 加载WebAssembly的两个新的API 新的 WebAssembly.compileStreaming/WebAssembly.instantiateStreaming 方法更加高效——它们直接在来自网络的原始字节流上执行操作&#xff0c;省去了 ArrayBuffer 步…

网络原理TCP/IP(2)

文章目录 TCP协议确认应答超时重传连接管理断开连接 TCP协议 TCP全称为"传输控制协议(Transmission Control Protocol").⼈如其名,要对数据的传输进⾏⼀个详细 的控制; TCP协议段格式 • 源/目的端口号:表⽰数据是从哪个进程来,到哪个进程去; • 32位序号/32位确认…

ClickHouse基于数据分析常用函数

文章标题 一、WITH语法-定义变量1.1 定义变量1.2 调用函数1.3 子查询 二、GROUP BY子句&#xff08;结合WITH ROLLUP、CUBE、TOTALS&#xff09;三、FORM语法3.1表函数3.1.1 file3.1.2 numbers3.1.3 mysql3.1.4 hdfs 四、ARRAY JOIN语法&#xff08;区别于arrayJoin(arr)函数&a…

12个RAG常见痛点及解决方案

Barnett等人的论文《Seven Failure Points When Engineering a Retrieval Augmented Generation System》介绍了RAG的七个痛点&#xff0c;我们将其延申扩展再补充开发RAG流程中常遇到的另外五个常见问题。并且将深入研究这些RAG痛点的解决方案&#xff0c;这样我们能够更好地在…