计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)

基于YOLOv5的无人机视频检测与计数系统

在这里插入图片描述

摘要:
无人机技术的快速发展和广泛应用给社会带来了巨大的便利,但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控,本文提出了一种基于YOLOv5的无人机视频检测与计数系统。该系统通过使用YOLOv5目标检测算法,能够准确地检测无人机,并实时计数其数量,提供给用户可视化的监控界面。

在这里插入图片描述

原文链接:https://blog.csdn.net/ALiLiLiYa/article/details/135515699

## 车辆跟踪+测距+测速

  • 该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。
  • 该项目使用了 YOLOv5目标检测算法和 DeepSORT
    目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!

教程博客_传送门链接------->单目测距和跟踪
在这里插入图片描述

yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)

  • 实现了局域的出/入 分别计数。
  • 显示检测类别,ID数量。
  • 默认是 南/北 方向检测,若要检测不同位置和方向,需要加以修改
  • 可在 count_car/traffic.py 点击运行
  • 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车、船。
  • 检测类别可在 objdetector.py 文件修改。

原文链接:https://blog.csdn.net/ALiLiLiYa/article/details/131819630
在这里插入图片描述

目标跟踪

  • YOLOv5是一种流行的目标检测算法,它是YOLO系列算法的最新版本。
  • YOLOv5采用了一种新的架构,可以在保持高准确性的同时提高检测速度。
  • 在本文中,我们将介绍如何使用YOLOv5_deepsort算法来进行船舶跟踪和测距。

教程博客_传送门链接------->目标跟踪
在这里插入图片描述

车道线识别

  • 本文主要讲述项目集成:从车道线识别、测距、到追踪,集各种流行模型于一体!
  • 不讲原理,直接上干货!
  • 把下文环境配置学会,受益终生!
  • 各大项目皆适用
    在这里插入图片描述

教程博客_传送门链接------->车道线识别+目标检测
看下本项目的效果:
在这里插入图片描述

语义分割

  • MMsegmentation是一个基于PyTorch的图像分割工具库,
  • 它提供了多种分割算法的实现,包括语义分割、实例分割、轮廓分割等。
  • MMsegmentation的目标是提供一个易于使用、高效、灵活且可扩展的平台,以便开发者可以轻松地使用最先进的分割算法进行研究和开发

教程博客_传送门链接------->语义分割

在这里插入图片描述

姿态识别

  • 体姿态估计是计算机视觉中的一项重要任务
  • 具有各种应用,例如动作识别、人机交互和监控。
  • 近年来,基于深度学习的方法在人体姿态估计方面取得了显著的性能。
  • 其中最流行的深度学习方法之一是YOLOv7姿态估计模型


程博客_传送门链接------->:姿态识别https://blog.csdn.net/ALiLiLiYa/article/details/129482358
在这里插入图片描述

图像分类

  • 在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在 cs231n 上阅读有关迁移学习的更多信息。
  • 本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…
  • 首先们要知道深度学习大都包含了下面几个方面:

1.加载(处理)数据
2.网络搭建
3.损失函数(模型优化)
4 模型训练和保存

  • 把握好这些主要内容和流程,基本上对分类模型就大致有了个概念。

**教程博客_传送门链接--------->:图像分类
在这里插入图片描述

交通标志识别

  1. 项目是一个基于 OpenCV 的交通标志检测和分类系统
  2. 可以在视频中实时检测和分类交通标志。检测阶段使用图像处理技术,
  3. 在每个视频帧上创建轮廓并找出其中的所有椭圆或圆形。它们被标记为交通标志的候选项。

教程博客_传送门链接------->交通标志识别
在这里插入图片描述

表情识别、人脸识别

  • 面部情绪识别(FER)是指根据面部表情识别和分类人类情绪的过程。
  • 通过分析面部特征和模式,机器可以对一个人的情绪状态作出有根据的推断。
  • 这个面部识别的子领域高度跨学科,涉及计算机视觉、机器学习和心理学等领域的知识

教程博客_传送门链接------->表情识别
在这里插入图片描述

疲劳检测

  • 瞌睡经常发生在汽车行驶的过程中
  • 该行为害人害己,如果有一套能识别瞌睡的系统,那么无疑该系统意义重大!

教程博客_传送门链接------->疲劳检测
在这里插入图片描述

车牌识别

  • 用python3+opencv3做的中国车牌识别
  • 包括算法和客户端界面,只有2个文件,一个是界面代码,一个是算法代码
  • 点击即可出结果,方便易用!

链接:车牌识别
大致的UI界面如下,点击输入图片,右侧即可出现结果!
在这里插入图片描述

代码

额外说明:算法代码只有500行,测试中发现,车牌定位算法的参数受图像分辨率、色偏、车距影响。

--->qq 1309399183----------<代码交流def from_pic(self):self.thread_run = Falseself.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])if self.pic_path:img_bgr = predict.imreadex(self.pic_path)self.imgtk = self.get_imgtk(img_bgr)self.image_ctl.configure(image=self.imgtk)resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)for resize_rate in resize_rates:print("resize_rate:", resize_rate)r, roi, color = self.predictor.predict(img_bgr, resize_rate)if r:break#r, roi, color = self.predictor.predict(img_bgr, 1)self.show_roi(r, roi, color)

图像去雾去雨+目标检测+单目测距结合

  • 0.0实时感知本车周围物体的距离对高级驾驶辅助系统具有重要意义,当判定物体与本车距离小于安全距离时便采取主动刹车等安全辅助功,
  • 0.1这将进一步提升汽车的安全性能并减少碰撞的发生。上一章本文完成了目标检测任务,接下来需要对检测出来的物体进行距离测量。
  • 1.首先描述并分析了相机成像模型,推导了图像的像素坐标系与世界坐标系之间的关系。
  • 2.其次,利用软件标定来获取相机内外参数并改进了测距目标点的选取。
  • 3.最后利用测距模型完成距离的测量并对采集到的图像进行仿真分析和方法验证。
    传送门链接------------->:单目测距
    在这里插入图片描述

代码

for path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Warmupif device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):old_img_b = img.shape[0]old_img_h = img.shape[2]old_img_w = img.shape[3]for i in range(3):model(img, augment=opt.augment)[0]# Inferencet1 = time_synchronized()with torch.no_grad():   # Calculating gradients would cause a GPU memory leakpred = model(img, augment=opt.augment)[0]t2 = time_synchronized()distance=object_point_world_position(u, v, h, w, out_mat, in_mat):

路径规划

本节针对越野场景路径规划问题,采用栅格法建立障碍物、威胁物和越野道路模型,模拟真实的越野环境场景。

  • 引入方向变化惩罚和局部区域复杂度惩罚来优化A算法,使算法规划出的路径更平滑,算法效率更高效。

  • 采用改进 Floyd 算法对路径进行双向平滑,并且进行了防碰撞处理,来确保规划出路径的安全可靠性。

  • 仿真结果表明,所改进的 A算法与传统算法相比较,效率提高了 30%,拐点数减少了4
    倍,所提算法能够在越野环境多重因素综合影响以及不同车辆性能和任务的要求下快速的规划出安全的路径。
    传送门链接---------------->:A star
    在这里插入图片描述

代码

###############创建A-Star类############
class AStar:# 描述AStar算法中的节点数据class Node:  #初始化def __init__(self, point, startPoint,endPoint, g=0,w=1,p=1):self.point = point  # 自己的坐标self.father = None  # 父节点self.g = g       # g值,g值在用到的时候会重新算# 计算h值,采用曼哈顿距离#self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  #采用欧几里得距离#self.h = math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5)*10#采用对角距离pp=(1-p)+0.2*math.exp((math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5))/(math.pow((math.pow((endPoint.x - startPoint.x),2) + math.pow((endPoint.y - startPoint.y),2)),0.5)))Diagonal_step = min((endPoint.x - point.x),(endPoint.y - point.y))straight_step = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) - 2*Diagonal_stepself.h  =(straight_step + math.pow(2,0.5)*Diagonal_step)*10*pp#print(pp)#初始化A-startdef __init__(self, map2d, startPoint, endPoint, passTag=1.0):#map2d地图信息,startPoint起点, endPoint终点, passTag=1.0为不可行驶区域# 开启表self.openList = []# 关闭表self.closeList = []# 寻路地图self.map2d = map2d# 起点终点if isinstance(startPoint, Point) and isinstance(endPoint, Point):self.startPoint = startPointself.endPoint = endPointelse:self.startPoint = Point(*startPoint)self.endPoint = Point(*endPoint)# 不可行走标记self.passTag = passTagdef getMinNode(self):"""获得openlist中F值最小的节点:return: Node"""currentNode = self.openList[0]for node in self.openList:if node.g + node.h < currentNode.g + currentNode.h:currentNode = nodereturn currentNode#返回最小代价的点

停车位检测

  • 基于深度学习的鱼眼图像中的停车点检测和分类是为二维物体检测而开发的。我们的工作增强了预测关键点和方框的能力。这在许多场景中很有用,因为对象不能用右上的矩形“紧密”表示。
  • 一个这样的例子,道路上的任何标记,由于透视效果,在现实世界中的对象矩形不会在图像中保持矩形,所以关键点检测显得格外重要。鱼眼图像还呈现了观察到这种现象的另一种场景,由于鱼眼宽广的视角,可以扑捉更多画像

链接:停车位检测

在这里插入图片描述

代码

#全部代码可加qq1309399183
def train():#parses command line argsargs = parse_args()#parses args from fileif args.config_file is not None:cfg_from_file(args.config_file)if (args.FIX_MODEL_CHECKPOINT):args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace(" ", "")args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace("=", "")cfg.RESUME_CHECKPOINT = args.FIX_MODEL_CHECKPOINTcfg.CHECK_PREVIOUS = Falseif (os.path.exists(cfg.RESUME_CHECKPOINT) == False):print('Exiting the process as asked model for resuming is not found')exit()if (args.RESUME_CHECKPOINT):cfg.RESUME_CHECKPOINT = args.RESUME_CHECKPOINTif (args.LOG_DIR):cfg.EXP_DIR = args.LOG_DIRcfg.LOG_DIR = cfg.EXP_DIRif (args.PHASE):cfg.PHASE = []cfg.PHASE.append(args.PHASE)if (args.EVAL_METHOD):cfg.DATASET.EVAL_METHOD = args.EVAL_METHOD#for backward compatibilityif cfg.DATASET.DATASET == 'psd':cfg.DATASET.DATASET = 'tiod'if cfg.DATASET.BGR_OR_RGB == True:#cfg.DATASET.PIXEL_MEANS = (123.68, 116.78, 103.94)#cfg.DATASET.PIXEL_MEANS = (123, 117, 104)cfg.DATASET.PIXEL_MEANS = (128.0, 128.0, 128.0) # simpler mean subtraction to keep data in int8 after mean subtractionprint("cfg: ", cfg)for phase in cfg.PHASE:cfg_dir = cfg.LOG_DIR + '/' + phase + '_cfg/'os.makedirs(os.path.dirname(cfg_dir), exist_ok=True)shutil.copy(args.config_file, cfg_dir)# to making every run consistent # TIInp.random.seed(100)torch.manual_seed(100)torch.cuda.manual_seed(100)random.seed(100)torch.cuda.manual_seed_all(999)torch.backends.cudnn.enabled = Falsetrain_model()if __name__ == '__main__':train()

图像雾去雨与目标检测

  • 针对不同的天气则采取不同的图像前处理方法来提升图像质量。
  • 雾天天气 时,针对当下求解的透射率会导致去雾结果出现光晕、伪影现象,本文采用加权最小二乘法细化透射率透。
  • 针对四叉树法得到的大气光值不精确的问题,改进四叉树法来解决上述问题。将上述得到的透射率和大气光值代入大气散射模型完成去雾处理;
  • 在图像处理后加入目标检测,提高了目标检测精度以及目标数量。

下图展现了雾天处理后的结果
图第一列为雾霾图像,第二列为没有加入图像处理的目标检测结果图,第三列为去雾后的目标检测结果图。

在这里插入图片描述

无人机检测

  • 反无人机目标检测与跟踪的意义在于应对无人机在现实世界中可能带来的潜在威胁,并保障空域安全。以下是这方面的几个重要意义:
  • 空域安全:无人机的广泛应用给空域安全带来了新的挑战。通过开展反无人机目标检测与跟踪研究,可以及时发现和追踪潜在的无人机入侵行为,确保空域的安全和秩序。
  • 防范恶意活动:无人机技术的快速发展也为一些恶意活动提供了新的工具和手段,如无人机进行窥探、非法监听、破坏等。反无人机目标检测与跟踪的研究可以帮助及时发现和阻止这些恶意活动,维护社会的稳定和安全


传送门链接-------------->:无人机检测

在这里插入图片描述

yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)

作品链接:

https://blog.csdn.net/ALiLiLiYa/article/details/135034830?spm=1001.2014.3001.5502

在这里插入图片描述

差帧算法(Frame Difference Algorithm)

差帧算法是一种基于视频序列的帧间差异来计算物体速度的方法。它基于一个简单的假设:相邻帧之间物体的位置变化越大,物体的速度越快。
差帧算法是一种基于视频序列的帧间差异来计算物体速度的方法。其原理是计算物体在相邻两帧之间的位置差异,然后通过时间间隔来计算物体的速度单目测距算法

单目测距
  • 单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。
  • 基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。

基于python的室内老人实时摔倒智能监测系统(康复训练检测+代码)

应用领域
摔倒检测技术在多个领域都有应用的潜力。以下是一些可能的应用领域:

老年人照护:老年人摔倒是导致伤害和事故的主要原因之一。通过使用摔倒检测技术,可以实时监测老年人的姿态并及时发现是否发生了摔倒事件。一旦检测到摔倒,系统可以自动触发警报、通知护理人员或紧急救援服务。

安全监控:在公共场所、工业领域和建筑工地等环境中,摔倒检测技术可以用于监测员工、访客或工人的安全。一旦检测到摔倒,系统可以立即发出警报,以便采取必要的紧急措施。

运动训练:在体育训练和康复治疗中,摔倒检测技术可以帮助教练或治疗师监测运动员或患者的姿势和动作。通过实时检测和反馈,可以改善运动技能、预防运动损伤,并提高康复治疗的效果。

虚拟现实:在虚拟现实(VR)和增强现实(AR)应用中,摔倒检测技术可以用于更加真实和沉浸的用户体验。通过监测用户的姿态和动作,系统可以相应地调整虚拟世界的呈现,以提供更加逼真和交互性的体验。

自动驾驶汽车:在自动驾驶汽车领域,摔倒检测技术可以用于监测乘客或驾驶员的状态。一旦检测到乘客或驾驶员发生摔倒,系统可以自动采取措施,如停车、呼叫急救等,以确保安全。

原文链接:https://blog.csdn.net/ALiLiLiYa/article/details/135557898

在这里插入图片描述

https://blog.csdn.net/ALiLiLiYa/article/details/135557898?spm=1001.2014.3001.5502

更多项目见主页:

https://blog.csdn.net/ALiLiLiYa?type=blog

最后 看下文推广,私信会回复!

计算机视觉、图像处理、毕业辅导、作业帮助、代码获取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/663946.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AJAX-认识URL

定义 概念&#xff1a;URL就是统一资源定位符&#xff0c;简称网址&#xff0c;用于访问网络上的资源 组成 协议 http协议&#xff1a;超文本传输协议&#xff0c;规定浏览器和服务器之间传输数据的格式&#xff1b;规定了浏览器发送及服务器返回内容的格式 协议范围&#xf…

flask基于Python的期货交易模拟系统的django-afl61-vue

期货交易模拟系统是一个便于用户在线查看期货投资、取消投资、风险控制、账户资金、持仓资金等&#xff0c;管理员进行管理的平台。因此本文主要论述了系统开发的过程和实现的功能&#xff0c;结合Web技术来实现的期货交易模拟系统。本系统以软件工程理论为开发基础&#xff0c…

UE4 C++ 静态加载类和资源

静态加载类和资源&#xff1a;指在编译时加载&#xff0c;并且只能在构造函数中编写代码 .h //增加所需组件的头文件 #include "Components/SceneComponent.h" //场景组件 #include "Components/StaticMeshComponent.h" //静态网格体组件 #include &qu…

SpringBoot实战2

目录 1.如何返回两个类型的数据&#xff1f;User和Booth 2.如何使用MyBatis遍历一个数组进行查询&#xff1f; 3.前端要的数据太多太杂&#xff0c;我们拼接多个List&#xff0c;前端找数据困难&#xff0c;浪费时间。因此我们进行三表联表查询。 1.首先创建一个vo包&#x…

yo!这里是c++IO流相关介绍

目录 前言 C语言的输入输出 CIO流基本介绍 流的概念 IO流类库 iostream fstream stringstream 后记 前言 学过C语言的输入输出相关知识点的童鞋应该多多少少会觉得有些许麻烦&#xff0c;反正我就是这么觉得的&#xff0c;scanf、printf等函数不仅数量众多&#xff0c…

20240202在WIN10下使用whisper.cpp

20240202在WIN10下使用whisper.cpp 2024/2/2 14:15 【结论&#xff1a;在Windows10下&#xff0c;确认large模式识别7分钟中文视频&#xff0c;需要83.7284 seconds&#xff0c;需要大概1.5分钟&#xff01;效率太差&#xff01;】 83.7284/4200.1993533333333333333333333333…

使用 Go 发送微信群消息

关注公众号【爱发白日梦的后端】分享技术干货、读书笔记、开源项目、实战经验、高效开发工具等&#xff0c;您的关注将是我的更新动力&#xff01; 背景 最近的某个副业需要我写一个脚本&#xff08;脚本内容就不说了&#xff09;&#xff0c;需要通知群成员&#xff0c;尽快地…

云原生业务全流程DevOps配置预研与实践

背景 我在一个二线城市&#xff08;山东济南&#xff09;&#xff0c;相对与北上广深杭这些IT业发达的城市来说&#xff0c;济南IT业对于业内新技术的接受度是有点慢的&#xff0c;国内很多一线大厂早先几年前就开始实践使用的技术&#xff0c;我们这边也是近两年才开始慢慢兴…

如何计算模型的复杂度(参数量,FLOPs)

参考 如何计算神经网络模型的复杂度 深度学习卷积、全连接层、深度可分离层参数量和FLOPs计算公式 概念 Params&#xff1a;模型的参数量。&#xff08;空间复杂度&#xff09;FLOPs&#xff1a;FLoating point Operations&#xff0c;前向推理的计算量。&#xff08;时间复…

C++函数分文件编写之VScode版

VScode实现函数的分文件编写 1.下载插件创建项目2.分文件编写内容3.修改主函数文件名 我在分享内容时经常用的软件是VScode&#xff0c;相信有些内存敏感或需要VScode便利性的小伙伴也是更愿意使用VScode。那么接下来我们就盘一盘怎样使用VScode实现分文件编写。 1.下载插件创建…

2024 Flutter 重大更新,Dart 宏(Macros)编程开始支持,JSON 序列化有救

说起宏编程可能大家并不陌生&#xff0c;但是这对于 Flutter 和 Dart 开发者来说它一直是一个「遗憾」&#xff0c;这个「遗憾」体现在编辑过程的代码修改支持上&#xff0c;其中最典型的莫过于 Dart 的 JSON 序列化。 举个例子&#xff0c;目前 Dart 语言的 JSON 序列化高度依…

来看看Tomcat和Web应用的目录结构

在前面两篇大致了解了Tomcat的架构和运行流程&#xff0c;以及Tomcat应用中的web.xml。 聊一聊Tomcat的架构和运行流程&#xff0c;尽量通俗易懂一点-CSDN博客 来吧&#xff0c;好好理解一下Tomcat下的web.xml-CSDN博客 那接下来&#xff0c;再看看Tomcat的目录&#xff0c;…

vue-3d-model

vue-3d-model - npm GitHub - hujiulong/vue-3d-model: &#x1f4f7; vue.js 3D model viewer component 通过该插件降低Threejs的使用难度 vue项目加载三维模型&#xff0c;我把模型放在了服务器的tomcat里面&#xff0c;需要对tomcat的fbx项目文件夹设置跨域&#xff0c;如…

踩坑STM32CubeMX生成Makefile工程无法使用printf(“%f“)

过去一年偶有接触STM32开发时都是使用STM32CubeMX生成Makefile的工程&#xff0c;具体开发环境见配置Clion用于STM32开发&#xff08;Makefile&#xff09;&#xff0c;但没想到今天在使用printf打印输出浮点数时无法正常输出&#xff0c;不仅printf无法使用&#xff0c;其他涉…

详解Skywalking 采集springboot 应用日志的方法(内附源码)

大家都知道Skywalking 的链路追踪功能非常强大&#xff0c;可以帮助用户深入了解应用程序中各个组件之间的依赖关系。在实际应用中&#xff0c;往往需要将链路追踪数据与日志数据结合起来进行综合分析。Skywalking 提供了 Trace Log 结合插件&#xff0c;可以帮助用户快速定位问…

c++ STL less 的视角

c less 函数在不同的地方感觉所起的作用是不一样的&#xff0c; 这中间原因是 less 的视角不一样&#xff0c; 下面尝试给出解释下&#xff0c; 方便记忆 1、 左右视角 符合 排序sort less(value, element&#xff09; less 表示一种 “符合关系“&#xff0c; 表示sort 后…

关于Ubuntu下docker-mysql:ERROR 2002报错

报错场景&#xff1a; mysql容器创建好后登录mysql时即使密码正确也是报出下方提示&#xff1a; 原因是在创建mysql容器在创建时本地目录缺失&#xff0c; 先去自建一个目录&#xff0c;例如&#xff1a; /opt/my_sql 正确完整目录如下&#xff1a; docker run --namemys…

2024数学建模美赛F题思路代码分享

非法的野生动物贸易会对我们的环境产生负面影响&#xff0c;并威胁到全球的生物多样性。据估 计&#xff0c;它每年涉及高达265亿美元&#xff0c;被认为是全球第四大非法交易。[1]你将开发一个由数 据驱动的5年项目&#xff0c;旨在显著减少非法野生动物贸易。你的目标是说服一…

【misc | CTF】攻防世界 2017_Dating_in_Singapore

天命&#xff1a;这次终于碰到了算是真正的misc题目了 下载附件&#xff0c;打开是PDF&#xff0c;我一开始以为是flag隐写在PDF里面了 虽然也不奇怪&#xff0c;应该是可以的&#xff0c;毕竟PDF有xss漏洞也是可以的 言归正传&#xff0c;打开PDF 看着新加坡的日历&#xff…

ubuntu 上安装和配置Apache2+Subversion

目录 一、安装Apache2和SVN 二、Apache2设置 三、subversion配置 四、创建仓库和设置权限 五、仓库备份和恢复 系统环境 Ubuntu Linux (20.04) apache2 Subversion(1.13.0) 一、安装Apache2和SVN 通过命令在线安装apache2和subversion apt-get install apache2 libap…