20240202在WIN10下使用whisper.cpp

20240202在WIN10下使用whisper.cpp
2024/2/2 14:15


【结论:在Windows10下,确认large模式识别7分钟中文视频,需要83.7284 seconds,需要大概1.5分钟!效率太差!】
83.7284/420=0.19935333333333333333333333333333

前提条件,可以通过技术手段上外网!^_
首先你要有一张NVIDIA的显卡,比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡!】800¥
2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA、cuDNN。
2、安装Torch
3、配置whisper


识别得到的字幕chs.srt是繁体中文的,将来要想办法更换为简体中文的!
1
00:00:00,000 --> 00:00:01,400
前段時間有個巨石恆虎

2
00:00:01,400 --> 00:00:03,000
某某是男人最好的醫妹

3
00:00:03,000 --> 00:00:04,800
這裡的某某可以替換為減肥

4
00:00:04,800 --> 00:00:07,800
長髮 西裝 考研 速唱 永潔無間等等等等


https://github.com/Const-me/Whisper/releases
https://www.cnblogs.com/jike9527/p/17545484.html?share_token=5af4092d-5b67-4e52-8231-0ae220fd2185
https://www.cnblogs.com/jike9527/p/17545484.html
使用whisper批量生成字幕(whisper.cpp)

c:\>
c:\>git clone https://github.com/ggerganov/whisper.cpp
Cloning into 'whisper.cpp'...
remote: Enumerating objects: 6773, done.
remote: Counting objects: 100% (1995/1995), done.
remote: Compressing objects: 100% (275/275), done.
remote: Total 6773 (delta 1826), reused 1810 (delta 1714), pack-reused 4778
Receiving objects: 100% (6773/6773), 10.18 MiB | 6.55 MiB/s, done.
Resolving deltas: 100% (4368/4368), done.


c:\>cd whisper.cpp

c:\whisper.cpp>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 c:\whisper.cpp 的目录

2024/02/02  14:20    <DIR>          .
2024/02/02  14:20    <DIR>          ..
2024/02/02  14:20    <DIR>          .devops
2024/02/02  14:20    <DIR>          .github
2024/02/02  14:20               863 .gitignore
2024/02/02  14:20                99 .gitmodules
2024/02/02  14:20    <DIR>          bindings
2024/02/02  14:20    <DIR>          cmake
2024/02/02  14:20            19,729 CMakeLists.txt
2024/02/02  14:20    <DIR>          coreml
2024/02/02  14:20    <DIR>          examples
2024/02/02  14:20    <DIR>          extra
2024/02/02  14:20            32,539 ggml-alloc.c
2024/02/02  14:20             4,149 ggml-alloc.h
2024/02/02  14:20             5,996 ggml-backend-impl.h
2024/02/02  14:20            69,048 ggml-backend.c
2024/02/02  14:20            11,932 ggml-backend.h
2024/02/02  14:20           451,408 ggml-cuda.cu
2024/02/02  14:20             2,156 ggml-cuda.h
2024/02/02  14:20             7,813 ggml-impl.h
2024/02/02  14:20             2,425 ggml-metal.h
2024/02/02  14:20           152,813 ggml-metal.m
2024/02/02  14:20           231,753 ggml-metal.metal
2024/02/02  14:20            87,989 ggml-opencl.cpp
2024/02/02  14:20             1,422 ggml-opencl.h
2024/02/02  14:20           411,673 ggml-quants.c
2024/02/02  14:20            13,983 ggml-quants.h
2024/02/02  14:20           696,627 ggml.c
2024/02/02  14:20            87,399 ggml.h
2024/02/02  14:20    <DIR>          grammars
2024/02/02  14:20             1,093 LICENSE
2024/02/02  14:20            15,341 Makefile
2024/02/02  14:20    <DIR>          models
2024/02/02  14:20    <DIR>          openvino
2024/02/02  14:20             1,835 Package.swift
2024/02/02  14:20            39,942 README.md
2024/02/02  14:20    <DIR>          samples
2024/02/02  14:20    <DIR>          spm-headers
2024/02/02  14:20    <DIR>          tests
2024/02/02  14:20           239,648 whisper.cpp
2024/02/02  14:20            30,873 whisper.h
              26 个文件      2,620,548 字节
              15 个目录 128,119,971,840 可用字节

c:\whisper.cpp>
c:\whisper.cpp>
c:\whisper.cpp>
c:\whisper.cpp>cd models

c:\whisper.cpp\models>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 c:\whisper.cpp\models 的目录

2024/02/02  14:20    <DIR>          .
2024/02/02  14:20    <DIR>          ..
2024/02/02  14:20                 7 .gitignore
2024/02/02  14:20             4,980 convert-h5-to-coreml.py
2024/02/02  14:20             7,584 convert-h5-to-ggml.py
2024/02/02  14:20            10,955 convert-pt-to-ggml.py
2024/02/02  14:20            12,761 convert-whisper-to-coreml.py
2024/02/02  14:20             1,799 convert-whisper-to-openvino.py
2024/02/02  14:20             2,272 download-coreml-model.sh
2024/02/02  14:20             1,440 download-ggml-model.cmd
2024/02/02  14:20             3,039 download-ggml-model.sh
2024/02/02  14:20           575,451 for-tests-ggml-base.bin
2024/02/02  14:20           586,836 for-tests-ggml-base.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-large.bin
2024/02/02  14:20           575,451 for-tests-ggml-medium.bin
2024/02/02  14:20           586,836 for-tests-ggml-medium.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-small.bin
2024/02/02  14:20           586,836 for-tests-ggml-small.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-tiny.bin
2024/02/02  14:20           586,836 for-tests-ggml-tiny.en.bin
2024/02/02  14:20             1,506 generate-coreml-interface.sh
2024/02/02  14:20             1,355 generate-coreml-model.sh
2024/02/02  14:20             3,711 ggml_to_pt.py
2024/02/02  14:20                42 openvino-conversion-requirements.txt
2024/02/02  14:20             5,615 README.md
              23 个文件      5,281,665 字节
               2 个目录 105,396,047,872 可用字节

c:\whisper.cpp\models>main.exe -f samples\jfk.wav
'main.exe' 不是内部或外部命令,也不是可运行的程序
或批处理文件。

c:\whisper.cpp\models>dir
 驱动器 C 中的卷是 WIN10
 卷的序列号是 9273-D6A8

 c:\whisper.cpp\models 的目录

2024/02/02  14:23    <DIR>          .
2024/02/02  14:23    <DIR>          ..
2024/02/02  14:20                 7 .gitignore
2024/02/02  14:20             4,980 convert-h5-to-coreml.py
2024/02/02  14:20             7,584 convert-h5-to-ggml.py
2024/02/02  14:20            10,955 convert-pt-to-ggml.py
2024/02/02  14:20            12,761 convert-whisper-to-coreml.py
2024/02/02  14:20             1,799 convert-whisper-to-openvino.py
2024/02/02  14:20             2,272 download-coreml-model.sh
2024/02/02  14:20             1,440 download-ggml-model.cmd
2024/02/02  14:20             3,039 download-ggml-model.sh
2024/02/02  14:20           575,451 for-tests-ggml-base.bin
2024/02/02  14:20           586,836 for-tests-ggml-base.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-large.bin
2024/02/02  14:20           575,451 for-tests-ggml-medium.bin
2024/02/02  14:20           586,836 for-tests-ggml-medium.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-small.bin
2024/02/02  14:20           586,836 for-tests-ggml-small.en.bin
2024/02/02  14:20           575,451 for-tests-ggml-tiny.bin
2024/02/02  14:20           586,836 for-tests-ggml-tiny.en.bin
2024/02/02  14:20             1,506 generate-coreml-interface.sh
2024/02/02  14:20             1,355 generate-coreml-model.sh
2024/02/02  13:23        37,922,638 ggml-base-encoder.mlmodelc.zip
2024/02/02  13:23        59,707,625 ggml-base-q5_1.bin
2024/02/02  13:24       147,951,465 ggml-base.bin
2024/02/02  13:24        37,950,917 ggml-base.en-encoder.mlmodelc.zip
2024/02/02  13:24        59,721,011 ggml-base.en-q5_1.bin
2024/02/02  13:24       147,964,211 ggml-base.en.bin
2024/02/02  13:30     1,177,529,527 ggml-large-v1-encoder.mlmodelc.zip
2024/02/02  13:35     3,094,623,691 ggml-large-v1.bin
2024/02/02  13:31     1,174,643,458 ggml-large-v2-encoder.mlmodelc.zip
2024/02/02  13:30     1,080,732,091 ggml-large-v2-q5_0.bin
2024/02/02  13:35     3,094,623,691 ggml-large-v2.bin
2024/02/02  13:31     1,175,711,232 ggml-large-v3-encoder.mlmodelc.zip
2024/02/02  13:32     1,081,140,203 ggml-large-v3-q5_0.bin
2024/02/02  13:35     3,095,033,483 ggml-large-v3.bin
2024/02/02  13:57       567,829,413 ggml-medium-encoder.mlmodelc.zip
2024/02/02  13:57       539,212,467 ggml-medium-q5_0.bin
2024/02/02  14:03     1,533,763,059 ggml-medium.bin
2024/02/02  13:59       566,993,085 ggml-medium.en-encoder.mlmodelc.zip
2024/02/02  13:59       539,225,533 ggml-medium.en-q5_0.bin
2024/02/02  14:04     1,533,774,781 ggml-medium.en.bin
2024/02/02  14:08       163,083,239 ggml-small-encoder.mlmodelc.zip
2024/02/02  14:07       190,085,487 ggml-small-q5_1.bin
2024/02/02  14:09       487,601,967 ggml-small.bin
2024/02/02  14:09       162,952,446 ggml-small.en-encoder.mlmodelc.zip
2024/02/02  14:09       190,098,681 ggml-small.en-q5_1.bin
2024/02/02  14:11       487,614,201 ggml-small.en.bin
2024/02/02  14:10        15,037,446 ggml-tiny-encoder.mlmodelc.zip
2024/02/02  14:10        32,152,673 ggml-tiny-q5_1.bin
2024/02/02  14:11        77,691,713 ggml-tiny.bin
2024/02/02  14:11        15,034,655 ggml-tiny.en-encoder.mlmodelc.zip
2024/02/02  14:11        32,166,155 ggml-tiny.en-q5_1.bin
2024/02/02  14:12        43,550,795 ggml-tiny.en-q8_0.bin
2024/02/02  14:12        77,704,715 ggml-tiny.en.bin
2024/02/02  14:20             3,711 ggml_to_pt.py
2024/02/02  13:23             1,477 gitattributes
2024/02/02  14:20                42 openvino-conversion-requirements.txt
2024/02/02  13:23             1,311 README.md
              57 个文件 22,726,106,592 字节
               2 个目录 105,396,191,232 可用字节

c:\whisper.cpp\models>cd ..

c:\whisper.cpp>dir

c:\whisper.cpp>
c:\whisper.cpp>
c:\whisper.cpp>main.exe -f samples\jfk.wav
Using GPU "NVIDIA GeForce GTX 1080", feature level 12.1, effective flags Wave32 | NoReshapedMatMul
Loaded MEL filters, 62.8 kb RAM
Loaded vocabulary, 51864 strings, 3050.6 kb RAM
Loaded 245 GPU tensors, 140.539 MB VRAM
Computed CPU base frequency: 2.29469 GHz
Loaded model from "models/ggml-base.en.bin" to VRAM
Created source reader from the file "samples\jfk.wav"

[00:00:00.000 --> 00:00:11.000]   And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
    CPU Tasks
LoadModel       577.635 milliseconds
RunComplete     422.9 milliseconds
Run     319.505 milliseconds
Callbacks       5.4751 milliseconds, 2 calls, 2.73755 milliseconds average
Spectrogram     52.7935 milliseconds, 3 calls, 17.5978 milliseconds average
Sample  7.6473 milliseconds, 27 calls, 283.233 microseconds average
Encode  188.011 milliseconds
Decode  125.975 milliseconds
DecodeStep      118.306 milliseconds, 27 calls, 4.38169 milliseconds average
    GPU Tasks
LoadModel       249.459 milliseconds
Run     231.117 milliseconds
Encode  99.0044 milliseconds
EncodeLayer     77.7554 milliseconds, 6 calls, 12.9592 milliseconds average
Decode  132.112 milliseconds
DecodeStep      132.103 milliseconds, 27 calls, 4.89271 milliseconds average
DecodeLayer     87.4824 milliseconds, 162 calls, 540.015 microseconds average
    Compute Shaders
mulMatTiled     63.4898 milliseconds, 60 calls, 1.05816 milliseconds average
mulMatByRowTiled        50.9198 milliseconds, 1959 calls, 25.9928 microseconds average
softMaxLong     27.5314 milliseconds, 27 calls, 1.01968 milliseconds average
norm    12.3785 milliseconds, 526 calls, 23.5333 microseconds average
addRepeatGelu   11.9749 milliseconds, 170 calls, 70.4406 microseconds average
fmaRepeat1      7.652 milliseconds, 526 calls, 14.5475 microseconds average
addRepeatEx     7.4319 milliseconds, 498 calls, 14.9235 microseconds average
softMaxFixed    6.913 milliseconds, 168 calls, 41.1488 microseconds average
copyConvert     5.397 milliseconds, 348 calls, 15.5086 microseconds average
convolutionMain 5.3903 milliseconds
convolutionMain2Fixed   5.2572 milliseconds
copyTranspose   4.6246 milliseconds, 336 calls, 13.7637 microseconds average
scaleInPlace    4.5107 milliseconds, 168 calls, 26.8494 microseconds average
addRepeatScale  3.7607 milliseconds, 324 calls, 11.6071 microseconds average
softMax 2.9733 milliseconds, 162 calls, 18.3537 microseconds average
addRepeat       1.8574 milliseconds, 180 calls, 10.3189 microseconds average
diagMaskInf     1.3711 milliseconds, 162 calls, 8.46358 microseconds average
convolutionPrep1        439.3 microseconds, 2 calls, 219.65 microseconds average
convolutionPrep2        229.4 microseconds, 2 calls, 114.7 microseconds average
addRows 191.5 microseconds, 27 calls, 7.09259 microseconds average
add     60.4 microseconds
mulMatByScalar  29.7 microseconds, 6 calls, 4.95 microseconds average
mulMatByRow     27.6 microseconds, 6 calls, 4.6 microseconds average
    Memory Usage
Model   858.5 KB RAM, 140.539 MB VRAM
Context 1.19063 MB RAM, 186.732 MB VRAM
Total   2.02901 MB RAM, 327.271 MB VRAM

c:\whisper.cpp>main.exe -l zh -osrt -m models/ggml-medium.bin chs.wav
Using GPU "NVIDIA GeForce GTX 1080", feature level 12.1, effective flags Wave32 | NoReshapedMatMul
Loaded MEL filters, 62.8 kb RAM
Loaded vocabulary, 51865 strings, 3037.1 kb RAM
Loaded 947 GPU tensors, 1462.12 MB VRAM
Computed CPU base frequency: 2.29469 GHz
Loaded model from "models/ggml-medium.bin" to VRAM
Created source reader from the file "chs.wav"

[00:00:00.000 --> 00:00:01.400]  ?????????????
[00:00:01.400 --> 00:00:03.000]  ????????????
[00:00:03.000 --> 00:00:04.800]  ?????????????????
[00:00:04.800 --> 00:00:07.800]  ??? ?? ??? ?? ?????????
[00:00:07.800 --> 00:00:09.200]  ???????????
[00:00:09.200 --> 00:00:12.000]  ??????????????????????
[00:00:12.000 --> 00:00:13.400]  ?????????
[00:00:13.400 --> 00:00:14.400]  ???????
[00:00:14.400 --> 00:00:17.400]  ?????????????????????????
[00:00:17.400 --> 00:00:20.000]  ?????????????????????
[00:00:20.000 --> 00:00:21.600]  ???????????????
[00:00:21.600 --> 00:00:22.800]  ?????????
[00:00:22.800 --> 00:00:24.400]  ?????????????
[00:00:24.400 --> 00:00:29.600]  ?????????????????? ?????????????????????
[00:00:29.600 --> 00:00:32.400]  ??????? ???????? ???
[00:00:32.400 --> 00:00:34.600]  ??????????????????
[00:00:34.600 --> 00:00:36.200]  ???????????
[00:00:36.200 --> 00:00:37.000]  ???
[00:00:37.000 --> 00:00:38.000]  ?????
[00:00:38.000 --> 00:00:39.400]  ???????????
[00:00:39.400 --> 00:00:40.600]  ????????
[00:00:40.600 --> 00:00:41.800]  ????? ?????
[00:00:41.800 --> 00:00:44.000]  ???????????????????
[00:00:44.000 --> 00:00:46.600]  ?????????????????????????
[00:00:46.600 --> 00:00:49.600]  ???????????????????????
[00:00:49.600 --> 00:00:52.000]  ???????????????????
[00:00:52.000 --> 00:00:54.200]  ???????????????????
[00:00:54.200 --> 00:00:56.000]  ??????? ??????
[00:00:56.000 --> 00:00:58.000]  ???????????????????
[00:00:58.000 --> 00:01:00.000]  ??????????????
[00:01:00.000 --> 00:01:01.000]  ????????
[00:01:01.000 --> 00:01:02.600]  ???????????
[00:01:02.600 --> 00:01:04.800]  ????????????? ????????
[00:01:04.800 --> 00:01:07.000]  ??11 ??????????????????
[00:01:07.000 --> 00:01:10.000]  ?????????????????? ????????
[00:01:10.000 --> 00:01:13.200]  ???? ??????????????????296%
[00:01:13.200 --> 00:01:16.000]  ?????????????????????
[00:01:16.000 --> 00:01:20.000]  ??????11 ?????? ????????????7????????
[00:01:20.000 --> 00:01:21.000]  ?????????
[00:01:21.000 --> 00:01:22.400]  ???????????
[00:01:22.400 --> 00:01:24.200]  ???? ????????
[00:01:24.200 --> 00:01:26.800]  ???????????????????????
[00:01:26.800 --> 00:01:28.400]  ???? ?????????
[00:01:28.400 --> 00:01:29.800]  ??????????
[00:01:29.800 --> 00:01:31.800]  ?????????????? ????
[00:01:31.800 --> 00:01:33.400]  ??????????????
[00:01:33.400 --> 00:01:35.400]  ???????????????
[00:01:35.400 --> 00:01:37.600]  ??? ?????2198
[00:01:37.600 --> 00:01:40.600]  ????????? ??????699
[00:01:40.600 --> 00:01:42.200]  ?????? ???????
[00:01:42.200 --> 00:01:45.000]  400?????? ?????????300?
[00:01:45.000 --> 00:01:48.200]  ??????? ????????200???????????
[00:01:48.200 --> 00:01:51.600]  ????? ????????????Citywalk????
[00:01:51.600 --> 00:01:54.600]  ?????? ???????1000????
[00:01:54.600 --> 00:01:58.200]  ????????????????????????????
[00:01:58.200 --> 00:02:00.400]  ?????????????????
[00:02:00.400 --> 00:02:02.200]  ?????????????
[00:02:02.200 --> 00:02:05.000]  ???????????????????????
[00:02:05.000 --> 00:02:07.400]  ????????? ???????????
[00:02:07.400 --> 00:02:08.600]  ????????
[00:02:08.600 --> 00:02:10.000]  ??????????
[00:02:10.000 --> 00:02:13.400]  ???????????????????????? ????1?1???
[00:02:13.400 --> 00:02:15.800]  ??????????????? ?????
[00:02:15.800 --> 00:02:18.200]  ?????????? ?????????
[00:02:18.200 --> 00:02:20.600]  ???????????? ???????
[00:02:20.600 --> 00:02:22.400]  ?????????? ???
[00:02:22.400 --> 00:02:26.400]  ????????? ????? ???? ??????????
[00:02:26.400 --> 00:02:29.200]  ???????? ???????????????????
[00:02:29.200 --> 00:02:30.800]  ????????????
[00:02:30.800 --> 00:02:32.600]  ???? ???????
[00:02:32.600 --> 00:02:35.400]  ????????? ????????
[00:02:35.400 --> 00:02:38.600]  ????????????? ???????????
[00:02:38.600 --> 00:02:41.000]  ?????? ???????????
[00:02:41.000 --> 00:02:43.600]  ?????????1000? ???????
[00:02:43.600 --> 00:02:46.400]  500???????? 200???????
[00:02:46.400 --> 00:02:48.400]  ?99 ??????????
[00:02:48.400 --> 00:02:50.800]  ???????????? ?????????
[00:02:50.800 --> 00:02:53.800]  ???????GORTEX??????? ??3000??
[00:02:53.800 --> 00:02:56.200]  ???????????????????????
[00:02:56.200 --> 00:03:00.000]  ???????????GORTEX???????????4500
[00:03:00.000 --> 00:03:03.000]  ?????GORTEX ?????????????
[00:03:03.000 --> 00:03:05.800]  ????? ???????????????????
[00:03:05.800 --> 00:03:08.000]  ???????? ????? ????
[00:03:08.000 --> 00:03:09.800]  ?????????????????
[00:03:09.800 --> 00:03:11.800]  ????????????????????
[00:03:11.800 --> 00:03:14.200]  ???????? ????????????
[00:03:14.200 --> 00:03:17.000]  ???????????? ????????
[00:03:17.000 --> 00:03:20.000]  ??????????? ??????????
[00:03:20.000 --> 00:03:21.600]  ????????????
[00:03:21.600 --> 00:03:23.200]  ?????????????
[00:03:23.200 --> 00:03:26.000]  ????????????????? ?????????????
[00:03:26.000 --> 00:03:29.000]  ??????????? ????????? ?????????
[00:03:29.000 --> 00:03:31.800]  ?????????? ??????????????
[00:03:31.800 --> 00:03:35.000]  ??????? ????????????????????
[00:03:35.000 --> 00:03:36.800]  ????????????
[00:03:36.800 --> 00:03:40.000]  ???? ???????????? ???
[00:03:40.000 --> 00:03:42.600]  ?????????? ???????????
[00:03:42.600 --> 00:03:46.000]  ?????????? ????????????
[00:03:46.000 --> 00:03:49.200]  ??????????????? ?????????????
[00:03:49.200 --> 00:03:52.200]  ?????????? ??????????
[00:03:52.200 --> 00:03:55.000]  ???????????????? ?????
[00:03:55.000 --> 00:03:58.000]  ???????????? ?????????????
[00:03:58.000 --> 00:04:01.000]  ?????????????????????? ?????
[00:04:01.000 --> 00:04:04.000]  ??????????????? ??????
[00:04:04.000 --> 00:04:06.600]  ??????? ???????????????
[00:04:06.600 --> 00:04:08.800]  ???????????????
[00:04:08.800 --> 00:04:12.000]  ?????????????????? ?????????
[00:04:12.000 --> 00:04:13.600]  ??????????????
[00:04:13.600 --> 00:04:16.200]  ??????????? ??????????
[00:04:16.200 --> 00:04:18.400]  ???????? ???????
[00:04:18.400 --> 00:04:21.800]  ?? ?????? ??????????????
[00:04:21.800 --> 00:04:25.800]  ??????????????? ??????????????????
[00:04:25.800 --> 00:04:29.200]  ???????? ????????????????????
[00:04:29.200 --> 00:04:30.800]  ?????????????????
[00:04:30.800 --> 00:04:33.400]  ?????????? ?????????
[00:04:33.400 --> 00:04:36.200]  ??????? ????????????????
[00:04:36.200 --> 00:04:39.400]  ???????? ???????????????
[00:04:39.400 --> 00:04:41.200]  ??????????????
[00:04:41.200 --> 00:04:43.600]  ?????????? ?????????
[00:04:43.600 --> 00:04:45.000]  ??????????
[00:04:45.000 --> 00:04:47.600]  ????????????????????
[00:04:47.600 --> 00:04:51.600]  ????????????? ????????? ???????
[00:04:51.600 --> 00:04:53.200]  ???????????
[00:04:53.200 --> 00:04:55.800]  ??? ??????????????????????
[00:04:55.800 --> 00:04:57.400]  ????????????????
[00:04:57.400 --> 00:04:59.800]  ?????????????????????
[00:04:59.800 --> 00:05:03.000]  ?????????????? ???????????
[00:05:03.000 --> 00:05:04.800]  ?????????????????
[00:05:04.800 --> 00:05:07.200]  ???????????? ??????????
[00:05:07.200 --> 00:05:09.400]  ???? ??????????????
[00:05:09.400 --> 00:05:11.600]  ??????????????????
[00:05:11.600 --> 00:05:14.800]  ???????????????? ???????????
[00:05:14.800 --> 00:05:16.400]  ???? ??????
[00:05:16.400 --> 00:05:18.800]  ????? ??????????????
[00:05:18.800 --> 00:05:20.800]  ???????????????
[00:05:20.800 --> 00:05:23.200]  ????????? ????????????
[00:05:23.200 --> 00:05:25.600]  ????????? ??????????????
[00:05:25.600 --> 00:05:29.800]  ?????? ????????????????????881?
[00:05:29.800 --> 00:05:31.800]  ??????? ??2000?
[00:05:31.800 --> 00:05:34.600]  ?????? ??????????????????
[00:05:34.600 --> 00:05:38.400]  ?????????8000????????? 2000???????
[00:05:38.600 --> 00:05:41.200]  ????????? ????????????
[00:05:41.200 --> 00:05:43.600]  ?????? ??? ????????
[00:05:43.600 --> 00:05:46.600]  ??2000??8000????????????????
[00:05:46.600 --> 00:05:49.600]  ??????????? ?2018?2021?
[00:05:49.600 --> 00:05:52.200]  ?????4???????60%??
[00:05:52.200 --> 00:05:56.000]  ??5??? ?????????????20??????60??
[00:05:56.000 --> 00:05:59.200]  ?????????? ?????????????????
[00:05:59.200 --> 00:06:02.200]  ???????????? ?????????????????
[00:06:02.200 --> 00:06:05.200]  ?????????? ???????????????
[00:06:05.200 --> 00:06:09.600]  ??? ????????? ????????????????????
[00:06:09.600 --> 00:06:11.400]  ????????????
[00:06:11.400 --> 00:06:15.200]  ???? ?????????? ????????????????
[00:06:15.200 --> 00:06:17.800]  ???? ????????????????
[00:06:17.800 --> 00:06:20.600]  ?350?????????????????
[00:06:20.600 --> 00:06:23.000]  ??????? ??????????
[00:06:23.000 --> 00:06:25.000]  ?????????????????
[00:06:25.000 --> 00:06:27.400]  ??? ???????????OK
[00:06:27.400 --> 00:06:29.600]  ?????????????????????
[00:06:29.600 --> 00:06:31.800]  ???????????????????
[00:06:31.800 --> 00:06:36.600]  ???????????????? ???????????????????????
[00:06:36.600 --> 00:06:38.800]  ?????????????????
[00:06:38.800 --> 00:06:41.400]  ???????????????????
[00:06:41.400 --> 00:06:44.200]  ??????????????????????????
[00:06:44.200 --> 00:06:46.800]  ????????????????????
[00:06:46.800 --> 00:06:48.800]  ????????????????
[00:06:48.800 --> 00:06:51.200]  ???????????????????
[00:06:51.200 --> 00:06:53.000]  ????????????????
[00:06:53.000 --> 00:06:56.000]  ?????????????????????????
[00:06:56.000 --> 00:07:01.600]  ????????????IC????? ????? ??????
    CPU Tasks
LoadModel       1.43866 seconds
RunComplete     83.7284 seconds
Run     83.6255 seconds
Callbacks       457.784 milliseconds, 187 calls, 2.44804 milliseconds average
Spectrogram     1.21106 seconds, 90 calls, 13.4562 milliseconds average
Sample  1.01043 seconds, 3535 calls, 285.836 microseconds average
Encode  15.2296 seconds, 17 calls, 895.858 milliseconds average
Decode  67.9228 seconds, 17 calls, 3.99546 seconds average
DecodeStep      66.9103 seconds, 3535 calls, 18.928 milliseconds average
    GPU Tasks
LoadModel       1.03839 seconds
Run     83.4773 seconds
Encode  15.3219 seconds, 17 calls, 901.288 milliseconds average
EncodeLayer     13.0778 seconds, 408 calls, 32.0533 milliseconds average
Decode  68.1554 seconds, 17 calls, 4.00914 seconds average
DecodeStep      68.1535 seconds, 3535 calls, 19.2796 milliseconds average
DecodeLayer     61.7764 seconds, 84840 calls, 728.152 microseconds average
    Compute Shaders
mulMatByRowTiled        38.8209 seconds, 1016702 calls, 38.1831 microseconds average
mulMatTiled     15.8527 seconds, 8993 calls, 1.76278 milliseconds average
fmaRepeat1      3.71454 seconds, 258888 calls, 14.348 microseconds average
addRepeatEx     3.43395 seconds, 255336 calls, 13.4487 microseconds average
normFixed       3.29705 seconds, 258888 calls, 12.7354 microseconds average
softMaxLong     2.62421 seconds, 3535 calls, 742.351 microseconds average
copyConvert     2.6175 seconds, 171312 calls, 15.2791 microseconds average
addRepeatScale  2.43674 seconds, 169680 calls, 14.3608 microseconds average
copyTranspose   2.43484 seconds, 170496 calls, 14.2809 microseconds average
softMaxFixed    1.78188 seconds, 85248 calls, 20.9023 microseconds average
addRepeatGelu   1.39165 seconds, 85282 calls, 16.3182 microseconds average
softMax 1.27396 seconds, 84840 calls, 15.0161 microseconds average
scaleInPlace    1.00817 seconds, 85248 calls, 11.8264 microseconds average
addRepeat       954.089 milliseconds, 86064 calls, 11.0858 microseconds average
diagMaskInf     652.093 milliseconds, 84840 calls, 7.68616 microseconds average
convolutionMain2Fixed   388.382 milliseconds, 17 calls, 22.846 milliseconds average
convolutionMain 163.663 milliseconds, 17 calls, 9.62722 milliseconds average
convolutionPrep1        24.0373 milliseconds, 34 calls, 706.979 microseconds average
addRows 21.3709 milliseconds, 3535 calls, 6.04552 microseconds average
convolutionPrep2        7.0976 milliseconds, 34 calls, 208.753 microseconds average
add     1.8821 milliseconds, 17 calls, 110.712 microseconds average
    Memory Usage
Model   877.966 KB RAM, 1.42785 GB VRAM
Context 109.465 MB RAM, 785.219 MB VRAM
Total   110.322 MB RAM, 2.19467 GB VRAM

c:\whisper.cpp>


https://github.com/ggerganov/whisper.cpp/tree/master/models
https://github.com/ggerganov/whisper.cpp
ggerganov/whisper.cpp


https://blog.csdn.net/aiyolo/article/details/129674728?share_token=2c48b804-37f6-43a8-9159-08b28147ad67
Whisper.cpp 编译使用
whisper.cpp 是牛人 ggerganov 对 openai 的 whisper 语音识别模型用 C++ 重新实现的项目,开源在 github 上,具有轻量、性能高,实用性强等特点。这篇文章主要记录在 windows 平台,如何使用该模型在本地端进行语音识别。
whisper.cpp 的开源地址在 ggerganov/whisper.cpp: Port of OpenAI’s Whisper model in C/C++ (github.com),首先将项目下载在本地。
git clone https://github.com/ggerganov/whisper.cpp
whisper.cpp 项目里提供了几个现成的模型。建议下载 small 以上的模型,不然识别效果完全无法使用。


https://huggingface.co/ggerganov/whisper.cpp
ggerganov/whisper.cpp 
OpenAI's Whisper models converted to ggml format
Available models

Model    Disk    Mem    SHA
tiny    75 MB    ~390 MB    bd577a113a864445d4c299885e0cb97d4ba92b5f
tiny.en    75 MB    ~390 MB    c78c86eb1a8faa21b369bcd33207cc90d64ae9df
base    142 MB    ~500 MB    465707469ff3a37a2b9b8d8f89f2f99de7299dac
base.en    142 MB    ~500 MB    137c40403d78fd54d454da0f9bd998f78703390c
small    466 MB    ~1.0 GB    55356645c2b361a969dfd0ef2c5a50d530afd8d5
small.en    466 MB    ~1.0 GB    db8a495a91d927739e50b3fc1cc4c6b8f6c2d022
medium    1.5 GB    ~2.6 GB    fd9727b6e1217c2f614f9b698455c4ffd82463b4
medium.en    1.5 GB    ~2.6 GB    8c30f0e44ce9560643ebd10bbe50cd20eafd3723
large-v1    2.9 GB    ~4.7 GB    b1caaf735c4cc1429223d5a74f0f4d0b9b59a299
large-v2    2.9 GB    ~4.7 GB    0f4c8e34f21cf1a914c59d8b3ce882345ad349d6
large    2.9 GB    ~4.7 GB    ad82bf6a9043ceed055076d0fd39f5f186ff8062
note: large corresponds to the latest Large v3 model

For more information, visit:

https://github.com/ggerganov/whisper.cpp/tree/master/models
https://huggingface.co/ggerganov/whisper.cpp/tree/main

参考资料:
https://www.toutiao.com/article/7225218604160418338/?app=news_article&timestamp=1706803458&use_new_style=1&req_id=2024020200041726E9258609E554857D25&group_id=7225218604160418338&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=37e094d5-29b8-4d14-87bb-241cdc28b0ea&source=m_redirect
AI浪潮下的12大开源神器介绍
原创2023-04-23 20:33·IT小熊实验室丶


https://blog.csdn.net/sinat_18131557/article/details/130950719?share_token=25ca6bb5-8450-472c-9228-abc8c6ce74d8
whisper.cpp在Windows VS的编译
sinat_18131557 于 2023-05-30 16:03:53 发布


https://www.toutiao.com/article/7283079784329052726/?app=news_article&timestamp=1706803297&use_new_style=1&req_id=20240202000137411974769524167990E0&group_id=7283079784329052726&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=b7961b29-d87a-4b6c-bb8e-c7c213388390&source=m_redirect
【往期回顾】Github开源项目月刊精选-2023年8月
原创2023-09-27 08:30·Github推荐官


https://blog.csdn.net/weixin_45533131/article/details/132817683?share_token=72d8a161-4d49-4795-ad21-2ce5e2e4b197
在Linux(Centos7)上编译whisper.cpp的详细教程


https://blog.csdn.net/u012234115/article/details/134668510?share_token=e3835a0d-ac3b-4c86-9e32-e79ec85cddbe
开源C++智能语音识别库whisper.cpp开发使用入门


https://www.toutiao.com/article/7276732434920653312/?app=news_article&timestamp=1706802934&use_new_style=1&req_id=2024020123553463D3509B1706BC79D479&group_id=7276732434920653312&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=7bcb7488-a03d-4291-96fb-d0835ac76cca&source=m_redirect
OpenAI的whisper的c/c++ 版本体验
首先下载代码,注:我的OS环境是ubuntu 18.04。


https://post.smzdm.com/p/a3052kz7/?share_token=d4057cba-adb0-4c91-8a8b-d8a7adcf4087
显卡怎么玩 篇三:音频转字幕神器whisper升级版,whisper-webui使用教程


https://www.toutiao.com/article/7311876528407921162/?app=news_article&timestamp=1706801102&use_new_style=1&req_id=20240201232501647517150775FC7AD89A&group_id=7311876528407921162&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=dfa1976e-9422-49d2-a73b-6453becea90c&source=m_redirect
2023 AI 界7个最火的 Text-to-Video 模型


动画
https://www.toutiao.com/article/7312473532829745700/?app=news_article&timestamp=1706801052&use_new_style=1&req_id=2024020123241265D9BE3F954EB979A010&group_id=7312473532829745700&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=ca5d0d2a-2d9b-4959-b5c0-3dd869555240&source=m_redirect
推荐5款本周 超火 的开源AI项目
原创2023-12-15 07:32·程序员梓羽同学


https://blog.csdn.net/chenlu5201314/article/details/131156770?share_token=b8796ff0-44f8-471a-af6d-c1bc7ca57002
【开源工具】使用Whisper提取视频、语音的字幕
1、下载安装包Assets\WhisperDesktop.zip


https://www.toutiao.com/article/7222852915286016544/?app=news_article&timestamp=1706460752&use_new_style=1&req_id=2024012900523164164830D4E1ECF3CCE2&group_id=7222852915286016544&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=9bc8621f-b3b1-4f49-ae20-5214c1254515&source=m_redirect
从零开始,手把手教本地部署Stable Diffusion AI绘画 V3版 (Win最新)
原创2023-04-17 11:23·觉悟之坡


https://blog.csdn.net/S_eashell/article/details/135258411?share_token=f998e896-6dff-4fd4-8df2-c6aae132e95c
98秒转录2.5小时音频,最强音频转文字软件insanely-fast-whisper下载部署
老艾的AI世界 已于 2024-01-05 20:20:51 修改

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/663938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 Go 发送微信群消息

关注公众号【爱发白日梦的后端】分享技术干货、读书笔记、开源项目、实战经验、高效开发工具等&#xff0c;您的关注将是我的更新动力&#xff01; 背景 最近的某个副业需要我写一个脚本&#xff08;脚本内容就不说了&#xff09;&#xff0c;需要通知群成员&#xff0c;尽快地…

云原生业务全流程DevOps配置预研与实践

背景 我在一个二线城市&#xff08;山东济南&#xff09;&#xff0c;相对与北上广深杭这些IT业发达的城市来说&#xff0c;济南IT业对于业内新技术的接受度是有点慢的&#xff0c;国内很多一线大厂早先几年前就开始实践使用的技术&#xff0c;我们这边也是近两年才开始慢慢兴…

如何计算模型的复杂度(参数量,FLOPs)

参考 如何计算神经网络模型的复杂度 深度学习卷积、全连接层、深度可分离层参数量和FLOPs计算公式 概念 Params&#xff1a;模型的参数量。&#xff08;空间复杂度&#xff09;FLOPs&#xff1a;FLoating point Operations&#xff0c;前向推理的计算量。&#xff08;时间复…

C++函数分文件编写之VScode版

VScode实现函数的分文件编写 1.下载插件创建项目2.分文件编写内容3.修改主函数文件名 我在分享内容时经常用的软件是VScode&#xff0c;相信有些内存敏感或需要VScode便利性的小伙伴也是更愿意使用VScode。那么接下来我们就盘一盘怎样使用VScode实现分文件编写。 1.下载插件创建…

2024 Flutter 重大更新,Dart 宏(Macros)编程开始支持,JSON 序列化有救

说起宏编程可能大家并不陌生&#xff0c;但是这对于 Flutter 和 Dart 开发者来说它一直是一个「遗憾」&#xff0c;这个「遗憾」体现在编辑过程的代码修改支持上&#xff0c;其中最典型的莫过于 Dart 的 JSON 序列化。 举个例子&#xff0c;目前 Dart 语言的 JSON 序列化高度依…

来看看Tomcat和Web应用的目录结构

在前面两篇大致了解了Tomcat的架构和运行流程&#xff0c;以及Tomcat应用中的web.xml。 聊一聊Tomcat的架构和运行流程&#xff0c;尽量通俗易懂一点-CSDN博客 来吧&#xff0c;好好理解一下Tomcat下的web.xml-CSDN博客 那接下来&#xff0c;再看看Tomcat的目录&#xff0c;…

vue-3d-model

vue-3d-model - npm GitHub - hujiulong/vue-3d-model: &#x1f4f7; vue.js 3D model viewer component 通过该插件降低Threejs的使用难度 vue项目加载三维模型&#xff0c;我把模型放在了服务器的tomcat里面&#xff0c;需要对tomcat的fbx项目文件夹设置跨域&#xff0c;如…

踩坑STM32CubeMX生成Makefile工程无法使用printf(“%f“)

过去一年偶有接触STM32开发时都是使用STM32CubeMX生成Makefile的工程&#xff0c;具体开发环境见配置Clion用于STM32开发&#xff08;Makefile&#xff09;&#xff0c;但没想到今天在使用printf打印输出浮点数时无法正常输出&#xff0c;不仅printf无法使用&#xff0c;其他涉…

详解Skywalking 采集springboot 应用日志的方法(内附源码)

大家都知道Skywalking 的链路追踪功能非常强大&#xff0c;可以帮助用户深入了解应用程序中各个组件之间的依赖关系。在实际应用中&#xff0c;往往需要将链路追踪数据与日志数据结合起来进行综合分析。Skywalking 提供了 Trace Log 结合插件&#xff0c;可以帮助用户快速定位问…

c++ STL less 的视角

c less 函数在不同的地方感觉所起的作用是不一样的&#xff0c; 这中间原因是 less 的视角不一样&#xff0c; 下面尝试给出解释下&#xff0c; 方便记忆 1、 左右视角 符合 排序sort less(value, element&#xff09; less 表示一种 “符合关系“&#xff0c; 表示sort 后…

关于Ubuntu下docker-mysql:ERROR 2002报错

报错场景&#xff1a; mysql容器创建好后登录mysql时即使密码正确也是报出下方提示&#xff1a; 原因是在创建mysql容器在创建时本地目录缺失&#xff0c; 先去自建一个目录&#xff0c;例如&#xff1a; /opt/my_sql 正确完整目录如下&#xff1a; docker run --namemys…

2024数学建模美赛F题思路代码分享

非法的野生动物贸易会对我们的环境产生负面影响&#xff0c;并威胁到全球的生物多样性。据估 计&#xff0c;它每年涉及高达265亿美元&#xff0c;被认为是全球第四大非法交易。[1]你将开发一个由数 据驱动的5年项目&#xff0c;旨在显著减少非法野生动物贸易。你的目标是说服一…

【misc | CTF】攻防世界 2017_Dating_in_Singapore

天命&#xff1a;这次终于碰到了算是真正的misc题目了 下载附件&#xff0c;打开是PDF&#xff0c;我一开始以为是flag隐写在PDF里面了 虽然也不奇怪&#xff0c;应该是可以的&#xff0c;毕竟PDF有xss漏洞也是可以的 言归正传&#xff0c;打开PDF 看着新加坡的日历&#xff…

ubuntu 上安装和配置Apache2+Subversion

目录 一、安装Apache2和SVN 二、Apache2设置 三、subversion配置 四、创建仓库和设置权限 五、仓库备份和恢复 系统环境 Ubuntu Linux (20.04) apache2 Subversion(1.13.0) 一、安装Apache2和SVN 通过命令在线安装apache2和subversion apt-get install apache2 libap…

2023-12蓝桥杯STEMA考试 C++ 中高级试卷解析

蓝桥杯STEMA考试 C++ 中高级试卷(12月) 一、选择题 第一题 定义字符串 string a = "Hello C++",下列选项可以获取到字符 C 的是(B)。 A、a[7] B、a[6] C、a[5] D、a[4] 第二题 下列选项中数值与其它项不同的是( C)。 A、 B、 C、 D、 第三题 定义变量 int i =…

【Springcloud篇】学习笔记十(十七章):Sentinel实现熔断与限流——Hystrix升级

第十七章_Sentinel实现熔断与限流 1.Sentinel介绍 1.1是什么 随着微服务的流行&#xff0c;服务和服务之间的稳定性变得越来越重要。 Sentinel 以流量为切入点&#xff0c;从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。 用来代替Hystrix Sentinel 具有…

Electron+Vue3+Vite的产品级模板项目

1. electron-vue3-template 基于Vue3 Electron TypeScript的客户端程序模板&#xff0c;使用Vite和Electron Forge构建和打包。 真正做到开箱即用&#xff0c;面向跨平台客户端设计&#xff0c;产品级的项目模板。 项目地址&#xff1a; https://github.com/winsoft666/el…

第5课 使用FFmpeg将rtmp流再转推到rtmp服务器

本课对应源文件下载链接&#xff1a; https://download.csdn.net/download/XiBuQiuChong/88801992 通过前面的学习&#xff0c;我们已经可以正常播放网络rtmp流及本地mp4文件。这节课&#xff0c;我们将在前面的基础上实现一个常用的转推功能&#xff1a;读取rtmp流或mp4文件并…

架构学习(二):原生scrapy如何接入scrapy-redis,初步入局分布式

原生scrapy如何接入scrapy-redis&#xff0c;实现初步入局分布式 前言scrpy-redis分布式碎语 实现流程扩展结束 前言 scrpy-redis分布式 下图是scrpy-redis官方提供的架构图&#xff0c;按我理解&#xff0c;与原生scrapy的差异主要是把名单队列服务器化&#xff0c;也是存储…

Modbus协议学习第七篇之libmodbus库API介绍(modbus_write_bits等)

写在前面 在第六篇中我们介绍了基于libmodbus库的演示代码&#xff0c;那本篇博客就详细介绍一下第六篇的代码中使用的基于该库的API函数。另各位读者&#xff0c;Modbus相关知识受众较少&#xff0c;如果觉得我的专栏文章有帮助&#xff0c;请一定点个赞&#xff0c;在此跪谢&…