时间序列预测 —— TCN模型

时间序列预测 —— TCN模型

卷积神经网络(Convolutional Neural Network,CNN)在图像处理等领域取得了显著的成就,一般认为在处理时序数据上不如RNN模型,而TCN(Temporal Convolutional Network)模型是一种基于卷积神经网络的时间序列预测模型,具有一定的优势。本文将介绍TCN模型的理论基础、公式推导、优缺点,并通过Python实现TCN的单步预测和多步预测,最后对TCN模型进行总结。

1. TCN模型理论及公式

TCN

1.1 TCN模型结构

TCN模型主要包含卷积层和残差块。卷积层用于提取序列中的局部特征,而残差块有助于捕捉序列中的长期依赖关系。TCN的典型结构如下:

Input -> [Conv1D] -> [Residual Block] x N -> [Output Layer]

其中,[Conv1D] 表示一维卷积层,[Residual Block] 表示残差块,N 表示残差块的堆叠次数。

1.2 卷积操作

TCN模型的卷积操作采用了膨胀卷积(Dilated Convolution),膨胀卷积通过在卷积核之间插入零元素来扩大感受野。膨胀卷积的数学表达式为:

y [ t ] = ∑ k = 0 K − 1 w [ k ] ⋅ x [ t − d ⋅ k ] y[t] = \sum_{k=0}^{K-1} w[k] \cdot x[t - d \cdot k] y[t]=k=0K1w[k]x[tdk]

其中, y [ t ] y[t] y[t] 是卷积操作的输出, w [ k ] w[k] w[k] 是卷积核的权重, x [ t − d ⋅ k ] x[t - d \cdot k] x[tdk] 是输入序列的元素, d d d 是膨胀率。

1.3 残差块

TCN模型的残差块由两个卷积层和一个残差连接组成。残差块的计算过程如下:

  1. 输入 x x x 经过一个膨胀卷积层,得到输出 y y y
  2. y y y 与输入 x x x 相加,得到残差块的输出。

残差块的数学表达式为:

Output = x + Conv1D ( x ) \text{Output} = x + \text{Conv1D}(x) Output=x+Conv1D(x)

1.4 TCN模型的预测

TCN模型的预测过程包括多个残差块的堆叠,以及最后的输出层。整个模型的预测过程可以用以下公式表示:

Output = Output Layer ( Residual Block ( Residual Block ( … ( Residual Block ( Input ) ) … ) ) ) \text{Output} = \text{Output Layer}(\text{Residual Block}(\text{Residual Block}(\ldots(\text{Residual Block}(\text{Input}))\ldots))) Output=Output Layer(Residual Block(Residual Block((Residual Block(Input)))))

2. TCN模型优缺点

2.1 优点

  • TCN模型能够捕捉序列中的长期依赖关系,适用于时间序列数据。
  • 模型结构相对简单,易于理解和调整。

2.2 缺点

  • TCN模型在某些场景下可能对序列中的短期模式抽取效果不如LSTM等模型。

3. TCN模型与LSTM、GRU的区别

TCN模型、LSTM(Long Short-Term Memory)、GRU(Gated Recurrent Unit)都是用于时间序列预测的模型,它们之间有一些区别:

  • 结构差异: TCN主要由卷积层和残差块组成,具有较为简单的结构;LSTM和GRU是循环神经网络(Recurrent Neural Network,RNN)的变种,具有包含循环单元的结构。
  • 捕捉依赖关系的方式: TCN通过膨胀卷积和残差块来捕捉序列中的依赖关系;LSTM和GRU通过内部的门控机制(门控循环单元)来控制信息的传递和遗忘,从而捕捉长期和短期依赖关系。

4. Python实现TCN的单步预测和多步预测

以下是使用TensorFlow中Keras库实现TCN模型的单步预测和多步预测的代码。

# 导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Input, Dense
from tcn import TCN, tcn_full_summary# 生成示例数据
def generate_data():t = np.arange(0, 100, 0.1)data = np.sin(t) + 0.1 * np.random.randn(len(t))return data# 数据预处理
def preprocess_data(data, look_back=10):scaler = MinMaxScaler(feature_range=(0, 1))data = scaler.fit_transform(data.reshape(-1, 1)).flatten()X, y = [], []for i in range(len(data) - look_back):X.append(data[i:(i + look_back)])y.append(data[i + look_back])return np.array(X), np.array(y)# 构建 TCN 模型
def build_tcn_model(look_back, filters=64, kernel_size=2, dilations=[1, 2, 4, 8, 16]):model = Sequential()model.add(Input(shape=(look_back, 1)))model.add(TCN(nb_filters=filters, kernel_size=kernel_size, dilations=dilations, use_skip_connections=True, return_sequences=False, activation='tanh'))model.add(Dense(units=1, activation='linear'))model.compile(optimizer='adam', loss='mean_squared_error')tcn_full_summary(model)return model# 单步预测
def tcn_single_step_predict(model, X):return model.predict(X.reshape(1, -1, 1))[0, 0]# 多步预测
def tcn_multi_step_predict(model, X, n_steps):predictions = []for _ in range(n_steps):prediction = tcn_single_step_predict(model, X)predictions.append(prediction)X = np.append(X[0, 1:], prediction).reshape(1, -1, 1)return predictions# 主程序
data = generate_data()
look_back = 10
X, y = preprocess_data(data, look_back)# 划分训练集和测试集
train_size = int(len(X) * 0.8)
X_train, y_train = X[:train_size], y[:train_size]
X_test, y_test = X[train_size:], y[train_size:]# 调整输入形状
X_train = X_train.reshape(X_train.shape[0], look_back, 1)
X_test = X_test.reshape(X_test.shape[0], look_back, 1)# 构建和训练 TCN 模型
tcn_model = build_tcn_model(look_back)
tcn_model.fit(X_train, y_train, epochs=50, batch_size=1, verbose=2)# 单步预测
single_step_prediction = tcn_single_step_predict(tcn_model, X_test[0])# 多步预测
n_steps = 10
multi_step_predictions = tcn_multi_step_predict(tcn_model, X_test[0], n_steps)# 可视化结果
plt.plot(data, label='True Data')
plt.plot([None] * len(X) + multi_step_predictions, label='TCN Predictions')
plt.legend()
plt.show()

上述代码实现了使用TCN模型进行时间序列的单步预测和多步预测。在单步预测中,模型使用最后一部分序列进行预测。在多步预测中,模型使用前面预测的结果作为输入来进行多步预测。

5. 总结

本文介绍了TCN模型的理论基础、公式推导、优缺点,并通过Python使用Keras库实现了TCN的单步预测和多步预测。TCN模型在时间序列预测任务中具有一定的优势,特别适用于捕捉序列中的长期依赖关系。然而,在实际应用中,不同任务可能需要根据具体情况选择合适的模型。希望通过本文的介绍和示例代码,读者能够更深入理解TCN模型及其在时间序列预测中的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/663806.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

十分钟上手vue!

Vue 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。无论是简单还是复杂的界面,Vue 都可以胜任。 一 vue.js的导入及使用 vue安装…

PostgreSQL从小白到高手教程 - 第44讲:pg流复制部署

PostgreSQL从小白到专家,是从入门逐渐能力提升的一个系列教程,内容包括对PG基础的认知、包括安装使用、包括角色权限、包括维护管理、、等内容,希望对热爱PG、学习PG的同学们有帮助,欢迎持续关注CUUG PG技术大讲堂。 第44讲&#…

AJAX-入门

定义 概念:AJAX是浏览器与服务器进行数据通信的技术 使用 1.先使用axios库,与服务器进行数据通信 1)基于XMLHttpRequest封装、代码简单、月下载量在14亿次 2)Vue、React项目中都会用到axios 2.再学习XMLHttpRequest对象的使用…

高宇辰:打造“π”型人才 | 提升之路系列(七)

导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项…

ElementUI Form:Upload 上传

ElementUI安装与使用指南 Upload 上传 点击下载learnelementuispringboot项目源码 效果图 el-upload.vue(Upload上传)页面效果图 el-upload.vue代码 import Vue from vue import VueRouter from vue-router import HomeView from ../views/HomeV…

【论文阅读笔记】Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis 记录前置知识AbstractIntroductionRelated WorkMethodLearning an Effective Codebook of Image Constituents for Use in TransformersLearning the Composition of Images with Transformers条件合成合成高分辨率图…

Interpolator:在Android中方便使用一些常见的CubicBezier贝塞尔曲线动画效果

说明 方便在Android中使用Interpolator一些常见的CubicBezier贝塞尔曲线动画效果。 示意图如下 import android.view.animation.Interpolator import androidx.core.view.animation.PathInterpolatorCompat/*** 参考* android https://yisibl.github.io/cubic-bezier* 实现常…

个人网站如何让搜索引擎收录

当我们花费功夫搭建好个人网站,如何能让搜索引擎搜索到个人网站呢?比如百度,根本百度不到自己网站的内容。这时候就要使用到搜索引擎提供的站点收录功能了,但是点开百度的搜索资源平台,添加自己的站点时,就…

Java/Python/Go不同开发语言基础数据结构和相关操作总结-Map篇

Java/Python/Go不同开发语言基础数据结构和相关操作总结 1. Java1.1 基础操作1.1.1 数据结构和定义方式1.1.2 增加1.1.3 修改1.1.4 查询1.1.5 删除1.1.6 获取总长度1.1.7 按key排序1.1.8 按value排序1.1.9 遍历 1.2 常用其他方法1.2.1 几种数据结构的对比 2. Go2.1基础操作2.1.…

山东淄博刑侦大队利用无人机抓获盗窃团伙

山东淄博刑侦大队利用无人机抓获盗窃团伙 近期,山东淄博临淄区发生多起盗窃案件。通过视频追踪和调查访问,推断临淄区某村可能为嫌疑人藏匿地点。刑侦大队无人机应急小组迅速到达现场,经无人机高空侦查,发现并锁定了嫌疑人的藏匿…

格式化内存卡后,如何找回丢失的监控视频?

随着摄像头的应用越来越广泛,很多监控摄像头采用了内存卡作为存储介质,方便用户存储和查看摄像头拍摄的视频文件。然而,由于各种原因,监控摄像头的内存卡有时会被意外格式化导致重要数据的丢失,给用户带来诸多困扰。 那…

SpringMVC请求和响应

文章目录 1、请求映射路径2、请求参数3、五种类型参数传递3.1、普通参数3.2、POJO类型参数3.3、嵌套POJO类型参数3.4、数组类型参数3.5、集合类型参数 4、json数据传递4.1、传递json对象4.2、传递json对象数组 5、日期类型参数传递6、响应6.1、响应页面6.2、文本数据6.3、json数…

PHP集成开发 -- PhpStorm 2023

PhpStorm 2023是一款强大的PHP集成开发环境(IDE),旨在提高开发人员的生产力和代码质量。以下是关于PhpStorm 2023软件的详细介绍: 首先,PhpStorm 2023提供了丰富的代码编辑功能,包括语法高亮、自动补全、代…

【DDD】学习笔记-代码模型的架构决策

代码模型属于软件架构的一部分,它是设计模型的进化与实现,体现出了代码模块(包)的结构层次。在架构视图中,代码模型甚至会作为其中的一个视图,通过它来展现模块的划分,并定义运行时实体与执行视…

【AudioPolicy To AudioHAL笔记(三)】安卓S上audio_policy_configuration.xml 加载过程分析

安卓S上audio_policy_configuration.xml 加载过程分析 /*****************************************************************************************************************/ 声明: 本博客内容均由https://blog.csdn.net/weixin_47702410原创,转载or引用请注明…

「效果图渲染」效果图与3D影视动画渲染平台

效果图渲染和3D影视动画渲染都是视觉图像渲染的领域应用。效果图渲染主要服务于建筑、室内设计和产品设计等行业,这些领域通常对视觉呈现的精度和细节有较高要求。与之相比,3D影视动画渲染则普遍应用于电影、电视、视频游戏和广告等媒体领域,…

LLM(3) | 自注意力机制 (self-attention mechanisms)

LLM(3) | 自注意力机制 (self-attention mechanisms) self-attention 是 transformer 的基础, 而 LLMs 大语言模型也都是 transformer 模型, 理解 self-attention, 才能理解为什么 LLM 能够处理好上下文关联性。 本篇是对于 Must-Read Starter Guide t…

题目: 有1234个数字, 组成多个互不相同且无重复数字的三位数? 都是多少?

lua脚本如下 最原始的解题方法 local str{} local i, j, k0, 0, 0 for i1, 4 do for j1, 4 do for k1, 4 do if i~j and i~k and j~k then str[#str1]i..j..k end end end end print("组成的数有"..#str) print(table.unpack(str)) 运行的结果如下 组成的数有24 1…

SpringbootWeb案例

准备工作 需求说明 部门管理 部门管理功能开发包括:查询部门列表、删除部门、新增部门、修改部门   员工管理功能开发包括:查询员工列表(分页、条件)、删除员工、新增员工、修改员工 环境搭建 环境搭建步骤:1. 准备数据库表(dept、emp)…

【Chrono Engine学习总结】2-可视化

由于Chrono的官方教程在一些细节方面解释的并不清楚,自己做了一些尝试,做学习总结。 0、基本概念 类型说明: Chrono的可视化包括两块:实时可视化,以及离线/后处理可视化。 其中,实时可视化,又…