京东物流基于 StarRocks 的数据分析平台建设

作者:京东物流 数据专家 刘敬斌

小编导读:

京东集团 2007 年开始自建物流,2017 年 4 月正式成立京东物流集团,截至目前,京东物流已经构建了一套全面的智能物流系统,实现服务自动化、运营数字化及决策智能化。

京东物流在运营数字化及决策智能化过程中,实时化运营分析的业务需求越来越多,原有平台架构中的数据孤岛、查询性能低、运维难度大、开发效率低等问题日益凸显。2022 年,京东物流基于 StarRocks 打造了 Udata 统一查询引擎,高效解决了数据服务与数据分析的众多痛点。

近两年来,京东物流在 StarRocks 的使用中不断进行性能提升优化,取得了良好的效果。在 StarRocks Summit 2023 上,京东物流数据专家刘敬斌为大家介绍了 StarRocks 的应用经验,并重点分享了湖仓查询的优化经验和效果。另外,据刘敬斌介绍,在 2023 年京东双十一大促期间,京东物流 StarRocks 集群规模已经达到了 3 万核以上。

京东物流的用数特征和痛点

alt

一个企业的业务特征决定了用户的用数习惯,而用数习惯往往会演变出一些用数痛点,在京东物流的数据分析服务场景中存在 4 大痛点。

找数难

在我们的业务场景中,当一个订单从商城域进入物流域后,会经过很多环节,从仓储到分拣,再到配送、拓投,链条非常长,中间系统特别多,数据也比较多,各个系统产生的数据被存储到各种各样的异构存储里,一线运营人员在找数据时存在一定困难。

做数难

京东物流划分了很多省区,每个省区都有自己的运营策略,一线运营人员各自都有不同的做数方法论去适配自己的运营策略,而数据分析平台目前面对的用户大部分都是一线运营人员,数据需求千人千面,此外我们还希望让运营人员能像使用 Excel 一样的去使用大数据,降低大数据使用门槛,这也是我们面临的重要任务。

用数难

Hadoop 平台把数据算出来之后,一线运营人员通过内部的云盘系统,将数据下载到本地,然后导入到本地 Excel,这种用数模式存在一些问题:

  • 整个过程中有很多半人工方式,效率非常低;

  • 每个省区的数据来源都不一致,可能会导致数据口径不统一;

  • Excel 对于大数据的处理能力有很多缺陷;

协同难

报表生成之后,有时需要互相传阅,在 Excel 非常多的情况下,大家互相传输,有时会用到一些线下的传输工具,导致数据来源不明晰,由于传输过程中有很多人工参与,协同比较困难,数据的时效性、安全性都得不到保障,并且存在大量重复性工作,性能体验非常差。

基于 StarRocks 的解决方案

京东物流 Udata 里面关于数据分析服务有两个概念:

  • 数据服务:当数据通过 SQL 方式提供对外赋能时,SQL 比较固化,查询场景也比较固定;

  • 数据分析:类似 Ad-hoc 查询,用户进行数据探索;

数据分析

alt

在数据分析场景中,我们要解决 4 个问题:

  • 找数,运营人员对业务非常了解,他们的需求和业务语义比较贴近,但是数据保存在大数据库,和研发人员更加贴近,这中间不可避免存在割裂,如何让运营人员用业务语义去找到对应的数据表?我们会把数据以指标表维度打上业务标签,建立数据视图,让一线找数的人员可以按照业务视角,通过图数据库的数据血缘关系快速找到想要的数。
  • 做数,一线运营人员对于决策非常了解,但是如何生成 SQL?Udata 通过无代码点选式的方式来让一线用户只需在线拖拖拽拽,就能将业务意图翻译成 SQL 语句。我们希望构建覆盖京东生态全部数据源的接入能力,让用户可以随时随地查询各种各样的数据,StarRocks 强大的联邦查询能力起到了非常关键的作用。
  • 用数,借助 Udata 的线上 Excel 能力,实现了将线下报表快速迁移到线上的方案,并且报表一次配置永久生效,通过 StarRocks 包括物化视图在内的一些高级特性,可以高效地得到查询结果。
  • 协同,当报表线上化之后,能够通过链接、邮件等方式实现 PC 和移动端随时随地看数的目标。

数据服务

alt

物流的业务发展比较快,当角色发生变化后,业务管理者需要及时看到数据,这对于数据的交付要求越来越高。一方面,数据的性能要求很高,另一方面,数据的可复用性比较低,因此我们需要投入更多的研发资源来应付大量的数据需求。

基于 StarRocks,我们得以通过界面的方式快速地开发数据服务接口。目前已经在很多场景应用了数据服务快速开发能力,基本能达到当日交付的响应速度。与传统方式相比,数据资产变现效率提升了 5 倍,开发成本降低了 80%,支持了我们很多的业务。

Udata 数据分析平台

Udata 数据分析平台产品设计

alt

图中是 Udata 数据分析平台的产品设计,从下往上看分为 4 个部分:

  • 数据源,现在可以兼容的数据源包括 MySQL、Elasticsearch、ClickHouse、Hive 等,还有一些 API,覆盖了京东大部分数据源,完成了京东生态对接;
  • 底层引擎,基于 StarRocks 打造,数据源会以外表挂载形式接入到查询引擎,底层的查询引擎分为两层:StarRocks 实时数仓,应用了 StarRocks 的数据快速摄入能力和高性能的数据查询能力。基于 StarRocks 打造的联邦查询,实现各种数据源跨数据源跨集群的查询,只要数据接入到系统就能进行查询。
  • 产品功能,从数据接入到数据管理、数据使用,以及数据接口编排、在线 Excel,涵盖了数据的生命周期,解决了找数用数的问题。
  • 数据赋能,主要通过数据分析和数据服务来对外赋能,支持的业务场景包含报表分析、办公协同、数据探索、指标监控、数据大屏等等。

湖仓新范式下的数据全景图

alt

图中为湖仓新范式下数据全景图,从下往上看分为 4 层:

  • 最下层左侧是生产系统数据区;中间是实时数据加工区,通过 Flink 接收众多系统接入的消息队列消息,然后加工到 OLAP 层;右侧是离线加工区,京东有很多历史数据都存在 Hadoop 里,我们会通过 Spark、Hive 来加工,存到 HDFS、Hive 里。

  • 往上一层是 OLAP 层,包含 MySQL、Elasticsearch、ClickHouse 等数据库,另外还有 StarRocks、Paimon。右则是离线区,采用了 Hive 和 HDFS。

  • 再往上是采用 StarRocks 搭建的一个支持超级联邦查询的集群引擎。

  • 最上层是 Udata 对外赋能提供的能力,包括数据地图、在线分析、数据服务、办公协同等。

为什么选择 StarRocks

alt

每个公司选择分析型数据库产品时都有很多关注点,我们主要关注的是实时性、应用性、灵活性、性能、生态等 5 个方面,StarRocks 在这些方面的表现都非常优秀,联邦查询、湖仓一体查询、实时更新等特性完全符合我们的需求,其中,湖仓一体查询是我们现在的主打方向。

因为一些历史原因,京东采用了很多 Elasticsearch,Elasticsearch 在搜索和倒排索引方面非常优秀,用来进行数据分析却可能不太适合,我们曾经接到过一个业务需求,需要从 Elasticsearch 把数据和业务迁移到 StarRocks,当时的集群规模约 800 CPU 左右,数据量约 2.5 TB,查询 QPS 大约 10,在业务同等满足的情况下,Elasticsearch 的 CPU 使用率高达70%,基本上无法再提供别的服务,StarRocks 的 CPU 使用率则在 30% 以下。显然,StarRocks 在主建模型和批量更新的加持之下,比 Elasticsearch 更适合这种数据分析。

StarRocks 的性能提升优化和效果

alt

在 StarRocks 的使用中,我们进行了一些性能提升,其中对湖仓查询的性能优化尤为重视。我们的湖主要是 Hive,关于 Hive 的查询,首先 HDFS 需要快速的文件访问能力,其次元数据的拉取也要足够快,另外基于 CBO 的查询优化也非常关键,尤其在进行 Join 查询时,更加需要采用最优的执行计划。

SQL 优化

跨集群查询时,需要从另外一个集群里面拉取大量数据,网络开销比较多,所以针对有计算能力的外表引擎,我们进行了计算下推,就是把类似于 group by、limit 的聚合计算尽可能推到外表引擎上去,直接从跨级群拿到的是外表引擎里面已经计算后的结果,数据量会显著下降。

Hive 优化

数据分区分桶是 Hive 非常重要的特性,可以在查询时尽可能扫描更少的数据。在实际使用中,有些用户不太了解 Hive 里的分区键和列有哪些关系,对此,我们通过检查用户的 SQL 语句,帮助用户尽量将 Hive 的分区列应用到 SQL 里,这是我们对于湖的一个优化。 访问 HDFS 会带来远程 I/O 消耗,我们通过 data cache 减少了这部分性能开销。此外,第一次查询时因为要拉取大量的元数据,也会导致一些性能开销,而我们有一些表特别大,有时分区达到上百万,这也是我们在解决的一个问题,我们让 Hive 元数据的更新以事件通知到 FE,触发 FE 主动更新缓存,从而使第一次查询也能比较快。与此同时,我们还对 FE 里的 hive meta cache size、ttl 等也进行了改造。另外,我们把 Hive 里的一些大分区表尽也可能地进行了治理。

HDFS 优化

当 HDFS 集群有大量任务时,查询性能会有一些抖动,对此我们进行了 Heged read 的优化,优化之后效果非常显著。另外我们也希望在离线的湖上面的查询进行一些物化视图的加速。

大查询保护

Hive 上的数据都特别大,有时一次查询会占上百 G 的数据,甚至可能把集群的资源全部占用,为了避免这种情况,我们进行了一些防护,比如限制 Hive 分区数目、限制扫描的 HDFS 文件大小,对查询时间较长、CPU 占用较高的一些大查询进行熔断。 经过这些改造,目前京东物流已经落地的 Udata 产品做到了数据使用从线下到线上的转变。现在数据使用实现了透明化、安全化,使用过程中没有人为参与因素,查询性能也比较高。

京东双十一的流量考验

alt

今年双十一大促期间,我们的数据查询 QPS 最高达到 150,相比平时呈几倍增长,并且通常要从海量数据里面进行查询,在 QPS 150 的情况下,扫描数据的峰值高达 300G 每秒,每秒扫描的数据行数达 95 亿行。对于数据写入,RPS 基本上是 40,数据写入峰值达 4.2G 每秒,每秒写入 234 万行。大促期间,StarRocks 集群规模已经达到了 3 万核以上。

未来规划探索

alt

存算分离

我们目前采用的是混合架构,查询引擎多而全,本地表和外表共存,未来希望从这种架构迁移到存算分离架构,使计算可以弹性扩展,数据存储分而治之。

离线数据的实时化

我们希望当 Hive 里的数据、Hadoop 里的数据发生变化之后,能够快速查询最新数据,现在也在考虑如何让 Hive 的数据更新及时通知 FE 进行更新,同时尽量消除实时更新带来的性能影响。

数据湖加速

对于我们来说,数据湖的数据量都比较大,带来的网络开销非常大,另外元数据的性能开销也会影查询体验,现在我们在积极地尝试包含 data cache 在内的方式来减少远程 I/O,同时采用物化视图加速查询,此外我们还在探索包括 Paimon、Hudi 在内的多种异构湖存储。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/662421.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源编辑器:ONLYOFFICE文档又更新了!

办公软件 ONLYOFFICE文档最新版本 8.0 现已发布:PDF 表单、RTL、单变量求解、图表向导、插件界面设计等更新。 什么是 ONLYOFFICE 文档 ONLYOFFICE 文档是一套功能强大的文档编辑器,支持编辑处理文本文档、电子表格、演示文稿、可填写的表单、PDF&#…

Java基础学习:System类和Static方法的实际使用

一、System类 1.在程序开发中,我们需要对这个运行的结果进行检验跟我们预判的结果是否一致,就会用到打印结果在控制台中显示出来使用到了System类。System类定义了一些和系统相关的属性和方法,它的属性和方法都是属于静态的,想使用…

数字孪生 三维建模方式以及细节步骤流程

对于数字孪生这个概念,三维建模不同行业认知都不尽相同。有的行业认为数字孪生重点在于建模,有的行业认为在于物联感知,还有部分认为是虚拟仿真。今天重点从建模角度和大家谈谈数字孪生技术常用的三维建模方式以及精细度分级。 数字孪生平台…

钉钉群机器人-发送群消息

1、钉钉群创建机器人 添加完成后,要记住 Webhook 路径; 2、机器人接入文档网址 自定义机器人接入 - 钉钉开放平台 3、JAVA代码 import com.dingtalk.api.DefaultDingTalkClient; import com.dingtalk.api.DingTalkClient; import com.dingtalk.api.re…

【靶场实战】Pikachu靶场XSS跨站脚本关卡详解

Nx01 系统介绍 Pikachu是一个带有漏洞的Web应用系统,在这里包含了常见的web安全漏洞。 如果你是一个Web渗透测试学习人员且正发愁没有合适的靶场进行练习,那么Pikachu可能正合你意。 Nx02 XSS跨站脚本概述 Cross-Site Scripting 简称为“CSS”&#xff…

聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度

前言 我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二&#xf…

Flink 流式读取 Debezium CDC 数据写入 Hudi 表无法处理 -D / Delete 消息

问题场景是:使用 Kafka Connect 的 Debezium MySQL Source Connector 将 MySQL 的 CDC 数据 (Avro 格式)接入到 Kafka 之后,通过 Flink 读取并解析这些 CDC 数据,然后以流式方式写入到 Hudi 表中,测试中发现…

Linux mount

挂载移动硬盘 1、通过 命令 fdisk -l 查看移动硬盘 2、创建 挂载点及文件 mkdir zen 3、mount -t ntfs /dev/sdb1 zen 报错:mount: unknown filesystem type ‘ntfs’ 需要安装ntfs-3g 如下才用编译安装方法: wget https://tuxera.com/opensource/ntf…

基于Java SSM框架实现智能快递分拣系统项目【项目源码】计算机毕业设计

基于java的SSM框架实现智能快递分拣系统演示 JAVA简介 Java主要采用CORBA技术和安全模型,可以在互联网应用的数据保护。它还提供了对EJB(Enterprise JavaBeans)的全面支持,java servlet API,JSP(java serv…

解读命令docker-compose up -d

docker-compose up -d 命令是用来启动Docker Compose项目中定义的服务的,并且让这些服务在后台以守护进程(daemon)模式运行。 详细解读如下: docker-compose: 这是Docker官方提供的用于定义和管理多容器应用的工具,它…

【基础算法练习】并查集模板

文章目录 算法思想代码模板题目描述:代码并查集模板模板题二(求并查集内集合的数量) 算法思想 并查集的核心操作: 将两个集合合并询问两个元素是否在一个集合中 基本原理:每个集合我们将他维护成一颗树,…

基于Transformer结构的扩散模型综述

🎀个人主页: https://zhangxiaoshu.blog.csdn.net 📢欢迎大家:关注🔍点赞👍评论📝收藏⭐️,如有错误敬请指正! 💕未来很长,值得我们全力奔赴更美好的生活&…

npm淘宝镜像过期解决办法

npm淘宝镜像过期解决办法 因为npm 官方镜像(registry.npmjs.org)在国内访问很慢,我们基本上都会选择切换到国内的一些 npm 镜像(淘宝镜像、腾讯云镜像等)。由于淘宝原来的镜像(registry.npm.taobao.org&am…

【习题】三方库

判断题 1. 三方组件是开发者在系统能力的基础上进行了一层具体功能的封装,对其能力进行拓展的工具 正确(True) 回答正确 2. 可以通过ohpm uninstall 指令下载指定的三方库 错误(False) 回答正确 3. lottie使用loadAnimation方法加载动画。 正确(True) 回答正…

react中使用useEffcet抛出错误“超出最大更新深度”

目录 【项目中部分代码】: 【说明】: 【抛出错误】:“超出最大更新深度” 【造成原因】: 【例如:】 【解决】: 【项目中部分代码】: // 类组件中:一进页面就拿到要notiveType的…

C语言:文件操作详解

创作不易,友友们给个三连吧!! 一、为什么我们需要使用文件 我们在写程序的时候,输入的数据是存储在电脑内存中的,如果程序退出内存回收,相应数据也就丢失了,等再次运行程序,就看不到…

VR全景技术如何运用在文旅展示,VR全景技术对景区有哪些好处

引言: 随着科技的不断进步和社会的不断发展,VR全景技术越来越受到人们的关注。在文化旅游行业中,VR全景技术的应用为景区提供了全新的展示方式和体验内容,极大地丰富了游客的文化旅游体验。那么VR全景技术能给文旅展示带来哪些好…

SpringBoot集成H2数据库

1&#xff09;添加H2的依赖 <dependency><groupId>com.h2database</groupId><artifactId>h2</artifactId><scope>compile</scope> </dependency>2&#xff09;添加连接配置&#xff0c;启用web控制台 spring:datasource:url…

UE4 C++ UGameInstance实例化

1.创建GameInstance C类 2.在.h添加变量 class 工程名称_API UMyGameInstance : public UGameInstance {GENERATED_BODY()public: //定义了三个公开的变量UMyGameInstance();UPROPERTY(EditAnywhere, BlueprintReadWrite, Category "MyGameInstance")FString Name…

gitlab ci cd 不完全指南

gitlab 可能大家很常用&#xff0c;CI、CD 也应该早有耳闻&#xff0c;但是可能还没有去真正地了解过&#xff0c;这篇文章就是我对 gitlab CI、CD 的一些理解&#xff0c;以及踩过的一些坑&#xff0c;希望能帮助到大家。 什么是 CI、CD CI&#xff08;Continuous Integrati…