分布式搜索引擎_学习笔记_3

分布式搜索引擎03

0.学习目标

1.数据聚合

**聚合(aggregations)**可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • **管道(pipeline)**聚合:其它聚合的结果为基础做聚合

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

GET /hotel/_search
{"size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brand", // 参与聚合的字段"size": 20 // 希望获取的聚合结果数量}}}
}

结果如图:

在这里插入图片描述

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","order": {"_count": "asc" // 按照_count升序排列},"size": 20}}}
}

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{"query": {"range": {"price": {"lte": 200 }}}, "size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","size": 20}}}
}

这次,聚合得到的品牌明显变少了:

在这里插入图片描述

1.2.4.Metric聚合语法

上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": { "terms": { "field": "brand", "size": 20},"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算"score_stats": { // 聚合名称"stats": { // 聚合类型,这里stats可以计算min、max、avg等"field": "score" // 聚合字段,这里是score}}}}}
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

在这里插入图片描述

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

在这里插入图片描述

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

在这里插入图片描述

1.3.2.业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

在这里插入图片描述

分析:

目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。

例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。

也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。

如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?

使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

在这里插入图片描述

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

在这里插入图片描述

结果是一个Map结构:

  • key是字符串,城市、星级、品牌、价格
  • value是集合,例如多个城市的名称

1.3.3.业务实现

cn.itcast.hotel.web包的HotelController中添加一个方法,遵循下面的要求:

  • 请求方式:POST
  • 请求路径:/hotel/filters
  • 请求参数:RequestParams,与搜索文档的参数一致
  • 返回值类型:Map<String, List<String>>

代码:

    @PostMapping("filters")public Map<String, List<String>> getFilters(@RequestBody RequestParams params){return hotelService.getFilters(params);}

这里调用了IHotelService中的getFilters方法,尚未实现。

cn.itcast.hotel.service.IHotelService中定义新方法:

Map<String, List<String>> filters(RequestParams params);

cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public Map<String, List<String>> filters(RequestParams params) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL// 2.1.querybuildBasicQuery(params, request);// 2.2.设置sizerequest.source().size(0);// 2.3.聚合buildAggregation(request);// 3.发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Map<String, List<String>> result = new HashMap<>();Aggregations aggregations = response.getAggregations();// 4.1.根据品牌名称,获取品牌结果List<String> brandList = getAggByName(aggregations, "brandAgg");result.put("brand", brandList);// 4.2.根据品牌名称,获取品牌结果List<String> cityList = getAggByName(aggregations, "cityAgg");result.put("city", cityList);// 4.3.根据品牌名称,获取品牌结果List<String> starList = getAggByName(aggregations, "starAgg");result.put("starName", starList);return result;} catch (IOException e) {throw new RuntimeException(e);}
}private void buildAggregation(SearchRequest request) {request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(100));request.source().aggregation(AggregationBuilders.terms("cityAgg").field("city").size(100));request.source().aggregation(AggregationBuilders.terms("starAgg").field("starName").size(100));
}private List<String> getAggByName(Aggregations aggregations, String aggName) {// 4.1.根据聚合名称获取聚合结果Terms brandTerms = aggregations.get(aggName);// 4.2.获取bucketsList<? extends Terms.Bucket> buckets = brandTerms.getBuckets();// 4.3.遍历List<String> brandList = new ArrayList<>();for (Terms.Bucket bucket : buckets) {// 4.4.获取keyString key = bucket.getKeyAsString();brandList.add(key);}return brandList;
}

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

在这里插入图片描述

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1.拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

在这里插入图片描述

课前资料中也提供了拼音分词器的安装包:

在这里插入图片描述

安装方式与IK分词器一样,分三步:

​ ①解压

​ ②上传到虚拟机中,elasticsearch的plugin目录

​ ③重启elasticsearch

​ ④测试

详细安装步骤可以参考IK分词器的安装过程。

测试用法如下:

POST /_analyze
{"text": "如家酒店还不错","analyzer": "pinyin"
}

结果:

在这里插入图片描述

2.2.自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

在这里插入图片描述

声明自定义分词器的语法如下:

PUT /test
{"settings": {"analysis": {"analyzer": { // 自定义分词器"my_analyzer": {  // 分词器名称"tokenizer": "ik_max_word","filter": "py"}},"filter": { // 自定义tokenizer filter"py": { // 过滤器名称"type": "pinyin", "keep_full_pinyin": false, "keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"name": {"type": "text","analyzer": "my_analyzer", # 保存文档内容时,使用自定义分词器-》写"search_analyzer": "ik_smart" # 搜索时使用id_smart ---》读}}}
}
参数详细说明:
keep_first_letter:这个参数会将词的第一个字母全部拼起来.例如:刘德华->ldh.默认为:true
keep_separate_first_letter:这个会将第一个字母一个个分开.例如:刘德华->l,d,h.默认为:flase.如果开启,可能导致查询结果太过于模糊,准确率太低.
limit_first_letter_length:设置最大keep_first_letter结果的长度,默认为:16
keep_full_pinyin:如果打开,它将保存词的全拼,并按字分开保存.例如:刘德华> [liu,de,hua],默认为:true
keep_joined_full_pinyin:如果打开将保存词的全拼.例如:刘德华> [liudehua],默认为:false
keep_none_chinese:将非中文字母或数字保留在结果中.默认为:true
keep_none_chinese_together:保证非中文在一起.默认为: true, 例如: DJ音乐家 -> DJ,yin,yue,jia, 如果设置为:false, 例如: DJ音乐家 -> D,J,yin,yue,jia, 注意: keep_none_chinese应该先开启.
keep_none_chinese_in_first_letter:将非中文字母保留在首字母中.例如: 刘德华AT2016->ldhat2016, 默认为:true
keep_none_chinese_in_joined_full_pinyin:将非中文字母保留为完整拼音. 例如: 刘德华2016->liudehua2016, 默认为: false
none_chinese_pinyin_tokenize:如果他们是拼音,切分非中文成单独的拼音项. 默认为:true,例如: liudehuaalibaba13zhuanghan -> liu,de,hua,a,li,ba,ba,13,zhuang,han, 注意: keep_none_chinese和keep_none_chinese_together需要先开启.
keep_original:是否保持原词.默认为:false
lowercase:小写非中文字母.默认为:true
trim_whitespace:去掉空格.默认为:true
remove_duplicated_term:保存索引时删除重复的词语.例如: de的>de, 默认为: false, 注意:开启可能会影响位置相关的查询.
ignore_pinyin_offset:在6.0之后,严格限制偏移量,不允许使用重叠的标记.使用此参数时,忽略偏移量将允许使用重叠的标记.请注意,所有与位置相关的查询或突出显示都将变为错误,您应使用多个字段并为不同的字段指定不同的设置查询目的.如果需要偏移量,请将其设置为false。默认值:true

测试:

在这里插入图片描述

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器

  • ②解压并放到elasticsearch的plugin目录

  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分

  • ②character filter

  • ③tokenizer

  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

2.3.自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

PUT test
{"mappings": {"properties": {"title":{"type": "completion"}}}
}

然后插入下面的数据:

POST test/_doc
{"title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{"title": ["SK-II", "PITERA"]
}
POST test/_doc
{"title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{"suggest": {"title_suggest": {"text": "s", // 关键字"completion": {"field": "title", // 补全查询的字段"skip_duplicates": true, // 跳过重复的"size": 10 // 获取前10条结果}}}
}

2.4.实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器

  2. 修改索引库的name、all字段,使用自定义分词器

  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器

  4. 给HotelDoc类添加suggestion字段,内容包含brand、business

  5. 重新导入数据到hotel库

2.4.1.修改酒店映射结构

代码如下:

// 酒店数据索引库
PUT /hotel
{"settings": {"analysis": {"analyzer": {"text_anlyzer": {"tokenizer": "ik_max_word","filter": "py"},"completion_analyzer": {  "tokenizer": "keyword","filter": "py"}},"filter": {"py": {"type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"id":{"type": "keyword"},"name":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword"},"starName":{"type": "keyword"},"business":{"type": "keyword","copy_to": "all"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart"},"suggestion":{"type": "completion","analyzer": "completion_analyzer"}}}
}

2.4.2.修改HotelDoc实体

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。

代码如下:

package cn.itcast.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;private Object distance;private Boolean isAD;private List<String> suggestion;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();// 组装suggestionif(this.business.contains("/")){// business有多个值,需要切割String[] arr = this.business.split("/");// 添加元素this.suggestion = new ArrayList<>();this.suggestion.add(this.brand);Collections.addAll(this.suggestion, arr);}else {this.suggestion = Arrays.asList(this.brand, this.business);}}
}

2.4.3.重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

在这里插入图片描述

2.4.4.自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

在这里插入图片描述

而自动补全的结果也比较特殊,解析的代码如下:

在这里插入图片描述

2.4.5.实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

在这里插入图片描述

返回值是补全词条的集合,类型为List<String>

1)在cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {return hotelService.getSuggestions(prefix);
}

2)在cn.itcast.hotel.service包下的IhotelService中添加方法:

List<String> getSuggestions(String prefix);

3)在cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public List<String> getSuggestions(String prefix) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSLrequest.source().suggest(new SuggestBuilder().addSuggestion("suggestions",SuggestBuilders.completionSuggestion("suggestion").prefix(prefix).skipDuplicates(true).size(10)));// 3.发起请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Suggest suggest = response.getSuggest();// 4.1.根据补全查询名称,获取补全结果CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");// 4.2.获取optionsList<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();// 4.3.遍历List<String> list = new ArrayList<>(options.size());for (CompletionSuggestion.Entry.Option option : options) {String text = option.getText().toString();list.add(text);}return list;} catch (IOException e) {throw new RuntimeException(e);}
}

3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

在这里插入图片描述

3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1.同步调用

方案一:同步调用

在这里插入图片描述

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

在这里插入图片描述

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

在这里插入图片描述

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步

3.2.1.思路

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

  • 在hotel-admin中的增、删、改业务中完成消息发送

  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

  • 启动并测试数据同步功能

3.2.2.导入demo

导入课前资料提供的hotel-admin项目:

在这里插入图片描述

运行后,访问 http://localhost:8099

在这里插入图片描述

其中包含了酒店的CRUD功能:

在这里插入图片描述

3.2.3.声明交换机、队列

MQ结构如图:

在这里插入图片描述

1)引入依赖

在hotel-admin、hotel-demo中引入rabbitmq的依赖:

<!--amqp-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
2)声明队列交换机名称

在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants

package cn.itcast.hotel.constatnts;public class MqConstants {/*** 交换机*/public final static String HOTEL_EXCHANGE = "hotel.topic";/*** 监听新增和修改的队列*/public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";/*** 监听删除的队列*/public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";/*** 新增或修改的RoutingKey*/public final static String HOTEL_INSERT_KEY = "hotel.insert";/*** 删除的RoutingKey*/public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
3)声明队列交换机

在hotel-admin中,定义配置类,声明队列、交换机:

package cn.itcast.hotel.config;import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class MqConfig {@Beanpublic TopicExchange topicExchange(){return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);}@Beanpublic Queue insertQueue(){return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);}@Beanpublic Queue deleteQueue(){return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);}@Beanpublic Binding insertQueueBinding(){return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);}@Beanpublic Binding deleteQueueBinding(){return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);}
}

docker中要启动mq容器:

docker start mq# 如果想设置开机 启动mq
docker update --restart always mq

hotel-adminhotel-demo工程中 引入mq的连接参数配置

spring:rabbitmq:virtual-host: /port: 5672host: 192.168.200.130username: itcastpassword: 123321

3.2.4.发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:

在这里插入图片描述

3.2.5.接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务

void deleteById(Long id);void insertById(Long id);

2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:

@Override
public void deleteById(Long id) {try {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", id.toString());// 2.发送请求client.delete(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}@Override
public void insertById(Long id) {try {// 0.根据id查询酒店数据Hotel hotel = getById(id);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());// 2.准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}

3)编写监听器

在hotel-demo中的cn.itcast.hotel.mq包新增一个类:

package cn.itcast.hotel.mq;import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;@Component
public class HotelListener {@Autowiredprivate IHotelService hotelService;/*** 监听酒店新增或修改的业务* @param id 酒店id*/@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)public void listenHotelInsertOrUpdate(Long id){hotelService.insertById(id);}/*** 监听酒店删除的业务* @param id 酒店id*/@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)public void listenHotelDelete(Long id){hotelService.deleteById(id);}
}

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

    在这里插入图片描述

    此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

在这里插入图片描述

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1.搭建ES集群

参考课前资料的文档:

在这里插入图片描述

其中的第四章节:

在这里插入图片描述

4.2.集群脑裂问题

4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

在这里插入图片描述

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求低
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

在这里插入图片描述

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

在这里插入图片描述

此时,node2和node3认为node1宕机,就会重新选主:

在这里插入图片描述

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

在这里插入图片描述

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1.分片存储测试

插入三条数据:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

测试可以看到,三条数据分别在不同分片:

在这里插入图片描述

结果:

在这里插入图片描述

4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

在这里插入图片描述

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

在这里插入图片描述

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

过程细节描述:

集群写入时,会先随机选取一个节点(node),该节点可以称之为“协调节点”。
新文档写入前,es会对其id做hash取模,来确定该文档会分布在哪个分片上。
当分片位置确定好后,es会判图当前“协调节点”上是否有该主分片。如果有,直接写;如果没有,则会将数据路由到包含该主分片的节点上。
整个写入过程是,es会将文档先写入主分片上(如p0),写完后再将数据同步一份到副本上(如r0)
待副本数据也写完后,副本节点会通知协调节点,最后协调节点告知客户端,文档写入结束。

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

在这里插入图片描述

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

在这里插入图片描述

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

在这里插入图片描述

宕机后的第一件事,需要重新选主,例如选中了node2:

在这里插入图片描述

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/661020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab中的图窗属性和坐标轴的属性

图窗的Position和Outerposition Position 指定窗口的尺寸和窗口在屏幕中的位置。 Outerposition 指定窗口外轮廓的大小和位置。 两者都是用一个4维向量来定义&#xff0c;格式为[左 底 宽 高]。 可通过set函数修改Position和Outerposition&#xff0c;如下&#xff1a;在屏幕左…

color - 让你的输出带点颜色

color color 是一个可以让你输出带颜色文本的库。 安装 go get github.com/fatih/color示例 输出到控制台 // 这会直接输出到控制台 color.Cyan("Prints text in cyan.")// 每个调用末尾会自动加上换行 color.Blue("Prints %s in blue.", "text&…

VMware vCenter告警:vSphere UI运行状况警报

vSphere UI运行状况警报 不会详细显示告警的具体内容&#xff0c;需要我们自己进一步确认告警原因。 vSphere UI运行状况警报是一种监控工具&#xff0c;用于检测vSphere环境中的潜在问题。当警报触发时&#xff0c;通常表示系统遇到了影响性能或可用性的问题。解决vSphere UI…

软件测试之软件缺陷管理

什么是软件缺陷 标准的定义&#xff1a;从产品内部看&#xff0c;缺陷是软件产品开发或维护过程中存在的错误、毛病等各种问题&#xff1b;从产品外部看&#xff0c;缺陷是系统所需要实现的某种功能的失效或违背 软件缺陷的生命周期 一个缺陷的正常生命周期是 新建&#xff…

如何分辨坏信息?

每当有社会热点&#xff0c;大家也许都会遇到一个困扰&#xff1a; 铺天盖地的信息&#xff0c;实在是太多了。究竟哪一些值得信任&#xff0c;哪些不值得信任&#xff1f;哪些可以接受&#xff0c;哪些最好保持怀疑&#xff1f; 我想用这篇文章&#xff0c;彻底把这个问题讲清…

CSS定位

定位的组成&#xff1a; 这个属性只有当position属性设置为absolute、fixed、relative时才有效。而且在position属性取值不同时&#xff0c;它们的含义也不同。left和right属性值除了可以设置为绝对的像素数外&#xff0c;还可以设置百分数。 定位模式&#xff1a; 静态定位st…

易语言系列学习1

通过本文章你会学习到 如果 如果真 获取编辑框内容 关闭本程序 监听按键让它等价于点击某个按钮 运算&#xff1a;或 且 非&#xff08;注意中间要有一个空格&#xff0c;否则会报错&#xff09; 效果 .版本 2.程序集 窗口程序集_启动窗口.子程序 _按钮2_被单击. 如果真 (编…

【项目实践02】【优先级阻塞队列】

文章目录 一、前言二、项目背景三、实现方案四、思路延伸1. 优先级队列1.1 concurrent 包下的 PriorityBlockingQueue1.2 Redisson 的优先级阻塞队列 2. jvisualvm 远程连接3. Jstack 高 CPU 排查 五、参考内容 一、前言 本系列用来记录一些在实际项目中的小东西&#xff0c;并…

qemu 抓取linux kernel vmcore

一、背景 在qemu调试linux kernel时 有时我们会遇到dump 情况&#xff0c;这时可以通过gdb 方式连接分析dump&#xff0c; 但实际中我们用得更多的是离线dump 分析&#xff0c;分析的文件通常是vmcore&#xff08;linux kernel panic 生成的coredump文件&#xff09;或者ramdu…

【多个SpringBoot模块项目如何变成聚合项目】

【前言】 项目虽然是Eureka、OpenFeign 进行服务注册和服务调用&#xff0c;但是每个模块都是一个单独的SpringBoot&#xff0c;启动每个模块都需要单独启动一个idea,觉得这个过于繁琐&#xff0c;现在想把项目变成一个聚合项目&#xff0c;只需要启动一个idea即可。 【过程】…

【数据结构 08】红黑树

一、概述 红黑树&#xff0c;是一种二叉搜索树&#xff0c;每一个节点上有一个存储位表示节点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从根到叶子的路径上各个节点着色方式的限制&#xff0c;红黑树确保没有一条路径会比其他路径长上两倍&#xff0c;因而是接进…

UGUI中Text和TextMeshPro实现图文混排方式

一些项目中实现图文混排是自定义一个脚本去继承Text类&#xff0c;然后文本中用富文本的方式进行图片和超链接的定义&#xff0c;在代码中用正则表达式匹配的方式把文本中图片和超链接给替换&#xff0c;如下&#xff1a; TextMeshPro实现是生成SpriteAsset进行图文混排的&…

YOLOv8-Segment C++

YOLOv8-Segment C https://github.com/triple-Mu/YOLOv8-TensorRT 这张图像是运行yolov8-seg程序得到的结果图&#xff0c;首先是检测到了person、bus及skateboard(这个是检测错误&#xff0c;将鞋及其影子检测成了滑板&#xff0c;偶尔存在错误也属正常)&#xff0c;然后用方…

go并发编程-runtime、Channel与Goroutine

1. runtime包 1.1.1. runtime.Gosched() 让出CPU时间片&#xff0c;重新等待安排任务(大概意思就是本来计划的好好的周末出去烧烤&#xff0c;但是你妈让你去相亲,两种情况第一就是你相亲速度非常快&#xff0c;见面就黄不耽误你继续烧烤&#xff0c;第二种情况就是你相亲速度…

电脑用的视频编辑软件有哪些 视频剪辑软件排行榜 视频剪辑软件推荐 视频剪辑培训学习 视频剪辑制作自学 电脑视频剪辑需要什么配置

电脑视频剪辑软件这么多&#xff0c;到底哪些比较好用&#xff1f;下面就让我们以十大电脑视频剪辑软件排行榜来细数好用的软件。另外&#xff0c;电脑视频剪辑需要什么配置&#xff1f;本文也会给大家从内存、CPU等参数上介绍&#xff0c;并推荐好用的电脑设备。 一、十大电脑…

Javaweb之SpringBootWeb案例之配置文件的详细解析

4. 配置文件 员工管理的增删改查功能我们已开发完成&#xff0c;但在我们所开发的程序中还一些小问题&#xff0c;下面我们就来分析一下当前案例中存在的问题以及如何优化解决。 4.1 参数配置化 在我们之前编写的程序中进行文件上传时&#xff0c;需要调用AliOSSUtils工具类&…

基于springboot+vue的校园赛事资讯网站(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

【Python笔记-设计模式】建造者模式

一、说明 又称生成器&#xff0c;是一种创建型设计模式&#xff0c;使其能够分步骤创建复杂对象。允许使用相同的创建代码生成不同类型和形式的对象。 (一) 解决问题 对象的创建问题&#xff1a;当一个对象的构建过程复杂&#xff0c;且部分构建过程相互独立时&#xff0c;可…

leetcode-704.二分查找

题目 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返回下标&#xff0c;否则返回 -1。 示例 1: 输入: nums [-1,0,3,5,9,12], target 9输出: 4 解释: 9 …

Web性能优化之如何评估网页性能——性能指标和度量工具介绍

前言 用户在访问 web 网页时&#xff0c;大部分都希望网页能够在一秒完成。事实上&#xff0c;加载时间每多 1 秒&#xff0c;就会流失 7%的用户。如果时间超过 8s 用户就会感到不耐烦、会放弃访问。这也就是著名的 “8秒原则”。 虽然当今设备及网络环境都大幅提升&#xff…