小米商城服务治理之客户端熔断器(Google SRE客户端熔断器)

目录

前言

一、什么是Google SRE熔断器

二、Google SRE 熔断器的工作流程:

三、客户端熔断器  (google SRE 熔断器) golang GRPC 实现

四、客户端熔断器 (google SRE 熔断器) golang GRPC单元测试


大家可以关注个人博客:xingxing – Web Developer from Somewhere   有关后端问题探讨

前言

当某个用户超过资源配额时,后端任务应该迅速拒绝该请求,返回一个“用户配额不足”类型的错误,该回复应该比真正处理该请求所消耗的资源少得多。然而,这种逻辑其实不适用于所有请求。例如,拒绝一个执行简单内存查询的请求可能跟实际执行该请求消耗内存差不多(因为这里主要的消耗是在应用层协议解析中,结果的产生部分很简单)。

就算在某些情况下,拒绝请求可以节省大量资源,发送这些拒绝回复仍然会消耗一定数量的资源。如果拒绝回复的数量也很多,这些资源消耗可能也十分可观。在这种情况下,有可能该后端在忙着不停地发送拒绝回复时一样会进人过载状态。

那么客户端截流机制就可以解决这个问题,也就是Google SRE

一、什么是Google SRE熔断器

是否可以做到在熔断器 Open 状态下(但是后端未 Shutdown)仍然可以放行少部分流量呢?Google SRE 熔断器提供了一种算法:客户端自适应限流(client-side throttling)。

解决的办法就是客户端自行限制请求速度,限制生成请求的数量,超过这个数量的请求直接在本地回复失败,而不会真正发送到服务端。

该算法统计的指标依赖如下两种,每个客户端记录过去两分钟内的以下信息(一般代码中以滑动窗口实现)。

  • requests:客户端请求总量

    • 注:The number of requests attempted by the application layer(at the client, on top of the adaptive throttling system)

  • accepts:成功的请求总量 - 被 accepted 的量

    • 注:The number of requests accepted by the backend

二、Google SRE 熔断器的工作流程:

  • 在通常情况下(无错误发生时) requests == accepts ;

  • 当后端出现异常情况时,accepts 的数量会逐渐小于 requests;

  • 当后端持续异常时,客户端可以继续发送请求直到 requests = K∗accepts,一旦超过这个值,客户端就启动自适应限流机制,新产生的请求在本地会被概率(以下称为p)丢弃;

  • 当客户端主动丢弃请求时,requests 值会一直增大,在某个时间点会超过 K∗accepts,使 p 计算出来的值大于 0,此时客户端会以此概率对请求做主动丢弃;

  • 当后端逐渐恢复时,accepts 增加,(同时 requests 值也会增加,但是由于 K 的关系,K*accepts的放大倍数更快),使得 (requests − K×accepts) / (requests + 1) 变为负数,从而 p == 0,客户端自适应限流结束。

客户端请求被拒绝的概率(Client request rejection probability,以下简称为 p)

p 基于如下公式计算(其中 K 为倍率 - multiplier,常用的值为 2)。

  • 当 requests − K∗accepts <= 0 时,p == 0,客户端不会主动丢弃请求;

  • 反之, p 会随着 accepts 值的变小而增加,即成功接受的请求数越少,本地丢弃请求的概率就越高。

客户端可以发送请求直到 requests = K∗accepts, 一旦超过限制, 按照 p 进行截流。

对于后端而言,调整 K 值可以使得自适应限流算法适配不同的服务场景

  • 降低 K 值会使自适应限流算法更加激进(允许客户端在算法启动时拒绝更多本地请求);

  • 增加 K 值会使自适应限流算法变得保守一些(允许服务端在算法启动时尝试接收更多的请求,与上面相反)。

熔断本质上是一种快速失败策略。旨在通过及时中断失败或超时的操作,防止资源过度消耗和请求堆积,从而避免服务因小问题而引发的雪崩效应。

三、客户端熔断器  (google SRE 熔断器) golang GRPC 实现

我们要考虑几个问题,第一个问题用哪种算法去做统计呢,我感觉用滑动窗口去统计比较合适,因为滑动窗口是统计一个周期内的请求以及响应.用户的响应也是随着周期性的变化的,这样就可以周期性的统计。

第二个问题是此算法在什么时候执行呢,就拿GRPC 来说,当然是拦截器呢,在发送后端服务请求的时候前就要去看是否要熔断,避免错误的请求发送到后端。

type googleSlide struct {sreSlide *list.List//滑动窗口大小interval int64mutex    sync.Mutex//客户端成功请求量的系数k float64
}type slideVal struct {//客户端请求时间time int64//客户端的总请求量req float64//客户端成功请求量accept float64
}type SlideValOptions func(val *slideVal)func NewSlideval(options ...SlideValOptions) *slideVal {t := &slideVal{time: time.Now().UnixNano(),}for _, option := range options {option(t)}return t
}func WithReqOption(req float64) SlideValOptions {return func(val *slideVal) {val.req = req}
}func WithAcceptReqOption(accept float64) SlideValOptions {return func(val *slideVal) {val.accept = accept}
}func NewGoogleSlide(interval time.Duration, k float64) *googleSlide {return &googleSlide{sreSlide: list.New(),interval: interval.Nanoseconds(),k:        k,}
}func (g *googleSlide) Sre() grpc.UnaryClientInterceptor {return func(ctx context.Context, method string, req, reply any, cc *grpc.ClientConn, invoker grpc.UnaryInvoker, opts ...grpc.CallOption) error {g.mutex.Lock()now := time.Now().UnixNano()front := g.sreSlide.Front()//调整滑动窗口for front != nil && front.Value.(*slideVal).time+g.interval < now {g.sreSlide.Remove(front)front = g.sreSlide.Front()}var r, accept float64front = g.sreSlide.Front()//当前滑动窗口下的请求和成功请求量的统计for front != nil {t := front.Value.(*slideVal)r += t.reqaccept += t.acceptfront = front.Next()}//客户端请求被拒绝的概率((requests − K×accepts) / (requests + 1))tail := (r - g.k*accept) / (r + 1)if tail > 0 {g.mutex.Unlock()return errors.New("request is fail")}g.sreSlide.PushBack(NewSlideval(WithReqOption(1)))err := invoker(ctx, method, req, req, cc, opts...)if err == nil {g.sreSlide.PushBack(NewSlideval(WithAcceptReqOption(1)))}g.mutex.Unlock()return err}
}

四、客户端熔断器 (google SRE 熔断器) golang GRPC单元测试

模拟客户端请求,handler 是正常的请求,handler1是返回有问题的请求,2 客户端熔断器的参数. 此值越小越激进,对服务端错误的容忍越小.

测试用例我说明下:

network is fail 是模拟服务端返回的错误,是要调用服务端,此时并不会限制,随着服务恢复,整个请求逐渐正常。

 request is fail 是熔断器返回的,不会调用服务端的,直接返回错误。这就是熔断器的魅力所在。

func TestGoogleSre(t *testing.T) {slide := NewGoogleSlide(5*time.Second, 2)builder := slide.Sre()// 模拟服务端正常的请求handler := func(ctx context.Context, method string, req, reply any, cc *grpc.ClientConn, opts ...grpc.CallOption) error {return nil}//模拟服务端出问题handler1 := func(ctx context.Context, method string, req, reply any, cc *grpc.ClientConn, opts ...grpc.CallOption) error {return errors.New("network is fail")}err := builder(context.Background(), "/test/a", &gen.GetByIdReq{}, &gen.GetByIDResp{}, nil, handler)assert.NoError(t, err)err = builder(context.Background(), "/test/a", &gen.GetByIdReq{}, &gen.GetByIDResp{}, nil, handler1)assert.Equal(t, err, errors.New("network is fail"))err = builder(context.Background(), "/test/a", &gen.GetByIdReq{}, &gen.GetByIDResp{}, nil, handler1)assert.Equal(t, err, errors.New("network is fail"))err = builder(context.Background(), "/test/a", &gen.GetByIdReq{}, &gen.GetByIDResp{}, nil, handler1)assert.Equal(t, err, errors.New("request is fail"))err = builder(context.Background(), "/test/a", &gen.GetByIdReq{}, &gen.GetByIDResp{}, nil, handler1)assert.Equal(t, err, errors.New("request is fail"))time.Sleep(5 * time.Second)err = builder(context.Background(), "/test/a", &gen.GetByIdReq{}, &gen.GetByIDResp{}, nil, handler)assert.NoError(t, err)
}

首先感谢《google SRE 》以及 腾讯微服务治理相关文章为我提供了深入的思考以及总结

代码或者测试用例如果有异议,请和我留言,大家一起探讨

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/660152.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++干货基地】C++引用与指针的区别:深入理解两者特性及选择正确应用场景

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引入 哈喽各位铁汁们好啊&#xff0c;我是博主鸽芷咕《C干货基地》是由我的襄阳家乡零食基地有感而发&#xff0c;不知道各位的…

Log4j2-11-log4j2 Layout 布局入门介绍

Layout 布局 Appender使用Layout将LogEvent格式化为一种表单&#xff0c;以满足将要消费日志事件的任何需求。 在Log4j中。x和Logback布局被期望将事件转换为字符串。 在Log4j 2布局返回一个字节数组。这使得Layout的结果可以在更多类型的appender中使用。然而&#xff0c;这…

[机器学习]简单线性回归——最小二乘法

一.线性回归及最小二乘法概念 2.代码实现 # 0.引入依赖 import numpy as np import matplotlib.pyplot as plt# 1.导入数据 points np.genfromtxt(data.csv, delimiter,) # points[0,0]# 提取points中的两列数据&#xff0c;分别作为x&#xff0c;y x points[:, 0] y poi…

Netty源码三:NioEventLoop创建与run方法

1.入口 会调用到父类SingleThreadEventLoop的构造方法 2.SingleThreadEventLoop 继续调用父类SingleThreadEventExecutor的构造方法 3.SingleThreadEventExecutor 到这里完整的总结一下&#xff1a; 将线程执行器保存到每一个SingleThreadEventExcutor里面去创建了MpscQu…

安卓滚动视图ScrollView

<?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:orientatio…

docker镜像命令

docker images 列表本机上的镜像 - REPOSITORY&#xff1a;表示镜像的仓库源 - TAG&#xff1a;镜像的标签 - IMAGE ID&#xff1a;镜像 - ID CREATED&#xff1a;镜像创建时间 - SIZE&#xff1a;镜像大小 同一仓库源可以有多个 TAG&#xff0c;代表这个仓库源的不同个版本&am…

大洋钻探系列之七中国大洋钻探船梦想号

中国大洋钻探梦想号2021年11月30日开工建造&#xff0c;2023年12月27日在珠江口海域完成首航&#xff0c;预计2024年正式交付使用&#xff0c;从而实现了2011年中国IODP专家咨询委员会提出的我国大洋钻探发展“三步走”战略的第三步建造中国的大洋钻探船。 恰逢IODP新旧计划交替…

vue3 + vite:打包部署后,动态组件渲染404问题解决

问题描述: 当需要渲染动态组件,动态的组件路径配置在数据库中时,如下图,本地运行能正常访问,用vite打包部署后,生产上改路径为404. 起初认为是,vite打包后的文件都是.js, 当页面加载后从数据库拿来的路径是.vue, 并且是src/xxx/xxx.vue 这种绝对路径形式的,所以就找不…

【每日一题】 2024年1月汇编

&#x1f525;博客主页&#xff1a; A_SHOWY&#x1f3a5;系列专栏&#xff1a;力扣刷题总结录 数据结构 云计算 数字图像处理 力扣每日一题_ 【1.4】2397.被列覆盖的最多行数 2397. 被列覆盖的最多行数https://leetcode.cn/problems/maximum-rows-covered-by-columns/ 这…

哪个牌子的头戴式耳机好?推荐性价比高的头戴式耳机品牌

随着科技的不断发展&#xff0c;耳机市场也呈现出百花齐放的态势&#xff0c;从高端的奢侈品牌到亲民的平价品牌&#xff0c;各种款式、功能的耳机层出不穷&#xff0c;而头戴式耳机作为其中的一员&#xff0c;凭借其优秀的音质和降噪功能&#xff0c;受到了广大用户的喜爱&…

ArrayList在添加元素时报错java.lang.ArrayIndexOutOfBoundException

一、添加单个元素数组越界分析 add源码如下 public boolean add(E e) {ensureCapacityInternal(size 1); // Increments modCount!!elementData[size] e;return true; } size字段的定义 The size of the ArrayList (the number of elements it contains). ArrayList的大…

雷达DoA估计的跨行业应用--麦克风阵列声源定位(Matlab仿真)

一、概述 麦克风阵列&#xff1a; 麦克风阵列是由一定数目的声学传感器&#xff08;麦克风&#xff09;按照一定规则排列的多麦克风系统&#xff0c;而基于麦克风阵列的声源定位是指用麦克风拾取声音信号&#xff0c;通过对麦克风阵列的各路输出信号进行分析和处理&#xff0c;…

力扣hot100 跳跃游戏 贪心

Problem: 55. 跳跃游戏 文章目录 思路复杂度Code 思路 &#x1f468;‍&#x1f3eb; 参考 挨着跳&#xff0c;记录最远能到达的地方 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( 1 ) O(1) O(1) Code class Solution {public boolean canJump(int[] nums)…

7 STL

1、STL简介 1.1基本概念 可复用利用的东西&#xff01; 面向对象和泛型编程&#xff08;模板&#xff09;的 目的->提升复用性 为了建立数据结构和算法的一套标准->STL横空出世 STL(Standard Template Liberary)标准模板库广义分&#xff1a;容器、算法、迭代器容器…

lwIP 初探(第一节)

一、TCP/IP 协议栈架构 网络协议有很多&#xff0c;如 MQTT、TCP、UDP、IP 等协议&#xff0c;这些协议组成了 TCP/IP 协议栈&#xff0c; 同时&#xff0c;这些协议具有层次性&#xff0c;它们分布在应用层&#xff0c;传输层和网络层。TCP/IP 协议栈的分层结 构和网络协议得…

百无聊赖之JavaEE从入门到放弃(十五)包装类

目录 一.包装类概念 二.自动装箱和拆箱 三.包装类的缓存问题 一.包装类概念 基本数据类型的包装类 我们前面学习的八种基本数据类型并不是对象&#xff0c;为了将基本类型数据和对象之间实现互 相转化&#xff0c;Java 为每一个基本数据类型提供了相应的包装类。 Java 是…

八斗学习笔记

1 初始环境安装 Anaconda安装(一款可以同时创建跟管理多个python环境的软件) https://blog.csdn.net/run_success/article/details/134656460 Anaconda创建一个新python环境(安装人工智能常用的第三方python包&#xff0c;如&#xff1a;tensorflow、keras、pytorch) https://…

12nm工艺,2.5GHz频率,低功耗Cortex-A72处理器培训

“ 12nm工艺&#xff0c;2.5GHz频率&#xff0c;低功耗Cortex-A72处理器培训” 本项目是真实项目实战培训&#xff0c;低功耗UPF设计&#xff0c;后端参数如下&#xff1a; 工艺&#xff1a;12nm 频率&#xff1a;2.5GHz 资源&#xff1a;2000_0000 instances 为了满足更多…

中科大计网学习记录笔记(二):网络核心

前言&#xff1a; 学习视频&#xff1a;中科大郑烇、杨坚全套《计算机网络&#xff08;自顶向下方法 第7版&#xff0c;James F.Kurose&#xff0c;Keith W.Ross&#xff09;》课程 该视频是B站非常著名的计网学习视频&#xff0c;但相信很多朋友和我一样在听完前面的部分发现信…

科技云报道:云原生PaaS,如何让金融业数字化开出“繁花”?

科技云报道原创。 在中国金融业数字化转型的历史长卷中&#xff0c;过去十年无疑是一部磅礴的史诗。 2017年&#xff0c;南京银行第一次将传统线下金融业务搬到了线上。那一年&#xff0c;它的互联网金融信贷业务实现了过去10年的业务总额。 2021年&#xff0c;富滇银行通过…