【FAS Survey】《Deep learning for face anti-spoofing: A Survey》

在这里插入图片描述

在这里插入图片描述

PAMI-2022

最新成果:https://github.com/ZitongYu/DeepFAS


文章目录

  • 1 Introduction & Background
    • 1.1 Face Spoofing Attacks
    • 1.2 Datasets for Face Anti-Spoofing
    • 1.3 Evaluation Metrics
    • 1.4 Evaluation Protocols
  • 2 Deep FAS with Commercial RGB Camera
    • 2.1 Hybrid (Handcraft + Deep Learning) Method
    • 2.2 Traditional Deep Learning Method
      • 2.2.1 Direct Supervision With Binary Cross Entropy Loss
      • 2.2.2 Pixel-Wise Supervision
    • 2.3 Generalized Deep Learning Method
      • 2.3.1 Generalization to Unseen Domain
      • 2.3.2 Generalization to Unknown Attack Types
  • 3 Deep FAS with Advanced Sensors
    • 3.1 Uni-Modal Deep Learning Upon Specialized Sensor
    • 3.2 Multi-Modal Deep Learning
  • 4 Discussion and Future Directions
    • 4.1 Architecture, Supervision and Interpretability
    • 4.2 Representation Learning
    • 4.3 Real-World Open-Set FAS
    • 4.4 Generic and Unified PA Detection
    • 4.5 Privacy-Preserved Training
  • Last but no least

1 Introduction & Background

人脸识别系统,automatic face recognition (AFR) system:

在这里插入图片描述

  • parallel fusion,并行
  • serial scheme,串联

人脸活检:

  • face presentation attack detection or face liveness detection

人脸活检方法分类:

  • 传统方法
  • 深度学习

(1)传统方法

Most traditional algorithms are designed based on human liveness cues and handcrafted features

liveness cues 包括但不限于:

  • eye-blinking
  • face and head movement(nodding and smiling)
  • gaze tracking
  • remote physiological signals(rPPG)
  • screen bezel(屏幕边框)
  • irregular/limited geometric depth distribution
  • abnormal reflection(the face surface of print/replay and transparent mask attacks are usually with irregular/limited geometric depth distribution and abnormal reflection, respectively.)
  • moire pattern(摩尔条纹)
  • illumination changes
  • physiological signals

classical handcrafted descriptors designed for extracting effective spoofing patterns from various color spaces(RGB, HSV, and YCbCr)

  • LBP
  • SIFT
  • SURF
  • HOG
  • DoG
  • image quality
  • optical flow motion

(2)深度学习的方法

是本文讨论的重点,作者总结如下
在这里插入图片描述

1.1 Face Spoofing Attacks

攻击类型,automatic face recognition (AFR) system 经常分为这两类

  • digital manipulation(in the digital virtual domain)
  • physical presentation attacks(PAs)

本文重点讨论 PAs——misleads the real-world AFR systems via presenting face upon physical mediums in front of the imaging sensors

PAs 不同切入角度有不同的分类形式
在这里插入图片描述
根据 attackers’ intention

  • impersonation:entails the use of spoof to be recognized as someone else via copying a genuine user’s facial attributes to special mediums such as photo, electronic screen, and 3D mask(拿着别人的假脸攻击)
  • obfuscation:hide or remove the attacker’s own identity using various methods such as glasses, makeup, wig, and disguised face.(在自己脸上作假来攻击)

根据 geometry property

  • 2D attacks——Flat/wrapped printed photos, eye/mouth-cut photos, and digital replay of videos are common 2D attack variants
  • 3D attacks——hard/rigid masks can be made from paper, resin, plaster, or plastic, flexible soft masks are usually composed of silicon or latex
    • low-fidelity 3D mask(低仿 3D)
    • high fidelity mask(高仿 3D)

根据 facial region covering

  • whole attacks
  • partial attacks

1.2 Datasets for Face Anti-Spoofing

Sensor:

  • multispectral SWIR(短波红外,1400 - 2500 nm)
  • NIR(750-1400 nm)
  • RGB
  • depth
  • Thermal
  • four-directional polarized
  • other specialized sensors (e.g., Light field camera)

数据集(prevailing public FAS datasets):data amount, subject numbers, modality / sensor, environmental setup, and attack types.

在这里插入图片描述

samples(图片数) and subjects(IDs)

公开数据发展的趋势:

  • large scale data amount
  • diverse data distribution
  • multiple modalities and specialized sensors

在这里插入图片描述

1.3 Evaluation Metrics

评价指标

  • Rejection Rate (FRR)
  • False Acceptance Rate (FAR)
  • Half Total Error Rate (HTER)
  • Equal Error Rate (EER)
  • Area Under the Curve (AUC)
  • Attack Presentation Classification Error Rate (APCER),
  • Bonafide Presentation Classification Error Rate (BPCER)
  • Average Classification Error Rate (ACER) ,越低越好

1.4 Evaluation Protocols

测试方式(evaluation protocols):

  • intra-dataset intra-type:with slight domain shift
  • cross-dataset intra-type:train on source domains and test on shifted target domain
  • intra-dataset cross-type(leave-one-type-out setting)
  • cross-dataset cross-type(train on datasets A test on datasets B)

在这里插入图片描述
上图评价指标都是越低越好

open-set problem in practice,需要考虑 unseen domain generalization

2 Deep FAS with Commercial RGB Camera

在这里插入图片描述

在这里插入图片描述

2.1 Hybrid (Handcraft + Deep Learning) Method

有如下三种混合形式

在这里插入图片描述
存在的缺点

(1)crafted features highly rely on the expert knowledge and not learnable, which are inefficient once enough training data are available;

(2)there might be feature gaps/incompatibility between handcrafted and deep features, resulting in performance saturation.

2.2 Traditional Deep Learning Method

在这里插入图片描述

  • 二分类的方法 supervision With Binary Cross Entropy Loss
  • pixel-wise auxiliary/generative supervisions

下面展开说说

2.2.1 Direct Supervision With Binary Cross Entropy Loss

在这里插入图片描述

treat FAS as a binary classification problem (e.g., ‘0’ for live while ‘1’ for spoofing faces, or vice versa)

bonafide versus PA

与常见的二分类视觉任务的不同点在于

  • self-evolving problem(attack vs. defense develop iteratively)
  • content-irrelevant (e.g., not related to facial attribute and ID)
  • subtle and with fine-grained details

very challenging to distinguish by even human eyes,性别二分类关注的是 semantic features,活检关注的是 arbitrary and unfaithful clues (e.g., screen bezel) for spoofing patterns,such intrinsic live/spoof clues are usually closely related with some position-aware auxiliary tasks.

存在的缺点:

  • these supervision signals only provide global (spatial/temporal) constraints for live/spoof embedding learning, which may causes FAS models to easily overfit to unfaithful patterns.

  • usually black-box and the characteristic of their learned features are hard to understand

2.2.2 Pixel-Wise Supervision

在这里插入图片描述

(1)Pixel-Wise Supervision With Auxiliary Task

provide more fine-grained and contextual task-related clues for better intrinsic feature learning,而不是 unfaithful patterns (e.g., screen bezel).

auxiliary supervision signals:

  • pseudo depth labels
  • binary mask labels——attack-type-agnostic and spatially interpretable
  • 3D point cloud map
  • Fourier spectra
  • reflection maps
  • ternary map
  • original face input reconstruction
  • pixel-wise reconstruction constraints
  • LBP texture map

存在的缺点:

  • usually relies on the high-quality (e.g., high-resolution) training data for fine grained spoof clue mining, and is harder to provide effective supervision signals when training data are too noisy and with low quality
  • the pseudo auxiliary labels are either human-designed or generated by other off-the-shelf algorithms, which are not always trustworthy

(2)Pixel-Wise Supervision With Generative Model

usually relaxes the expert-designed hard constraints (e.g.,auxiliary tasks), and leaves the decoder to reconstruct more natural spoof-related trace.

The generated spoof patterns are visually insightful, and are challenging to manually describe with human prior knowledge.

缺点

such soft pixel-wise supervision might easily fall into the local optimum and overfit on unexpected interference (e.g., sensor noise),

解决方式之一

Pixel-Wise Supervision With Generative Model + Pixel-Wise Supervision With Auxiliary Task

2.3 Generalized Deep Learning Method

在这里插入图片描述

Traditional end-to-end deep learning 缺点,下面场景会翻车

  • unseen dominant conditions——indicate the spoof irrelated external changes (e.g., lighting and sensor noise) but actually influence the appearance quality
  • unknown attack types——mean the novel attack types with intrinsic physical properties (e.g., material and geometry) which have not occurred in the training phase

Generalized Deep Learning Method

  • domain adaptation
  • generalization techniques
  • zero/few-shot learning
  • anomaly detection

2.3.1 Generalization to Unseen Domain

Domain adaptation(DA) vs Domain Generalization(DG)

在这里插入图片描述
一个需要无标签的 target domain 数据,一个不需要 target domain 的数据

(1)Domain adaptation(DA)

The distribution of source and target features are usually matched in a learned feature space

minimize the distribution discrepancy between the source and the target domain by utilizing unlabeled target data,

缺点

  • it is difficult and expensive to collect a lot of unlabeled target data
  • the source face data are usually inaccessible when deploying FAS models on the target domain

(2)Domain Generalization(DG)

缺点

domain generalization benefits FAS models to perform well in unseen domain, but it is still unknown whether it deteriorates the discrimination capability for spoofing detection under the seen scenarios.

2.3.2 Generalization to Unknown Attack Types

(1)Zero/Few-Shot Learning

缺点

few-shot learning 在 zero-shot case 场景会翻车

the failed detection usually occurs in the challenging attack types (e.g., transparent mask, funny eye, and makeup), which share similar appearance distribution with the bonafide

(2)Anomaly Detection

first trains a reliable one-class classifier to accurately cluster the live samples. Then any samples (e.g., unknown attacks) outside the margin of the live sample cluster would be detected as attacks

缺点

suffer from discrimination degradation compared with conventional live/spoof classification in the real-world open-set scenarios (i.e., both known and unknown attacks).

3 Deep FAS with Advanced Sensors

在这里插入图片描述

3.1 Uni-Modal Deep Learning Upon Specialized Sensor

在这里插入图片描述
绿色框还有个 medium 的评价,P < M < G < VG

NIR (900 to 1800nm), poor imaging quality in long distance

SWIR(940nm and 1450nm)

dynamic flash is sensitive under outdoor environments and is not user-friendly due to the long temporal activation time

3.2 Multi-Modal Deep Learning

(1)Multi-Modal Fusion

  • feature-level fusions
    modality features are usually extracted from separate branches with high computational cost
  • input-level fusions
  • decision-level fusions

(2)Cross-Modal Translation

pseudo modalities could be generated via cross-modality translation

missing modal data for multi-modal FAS

4 Discussion and Future Directions

the limitations of the current development

  • Limited live/spoof representation capacity with sub-optimal deep architectures, supervisions, and learning strategies
  • Evaluation under saturating and unpractical testing benchmarks and protocols
  • Isolating the anti-spoofing task on only the face area and physical attacks
  • Insufficient consideration about the interpretability and privacy issues

4.1 Architecture, Supervision and Interpretability

automatically search and find the best-suited temporal architectures especially for multi-modal usage

rich temporal context vs binary or pixel-wise supervision

More advanced feature visualization manners and fine-grained pixel-wise spoof segmentation should be developed for interpretable FAS

4.2 Representation Learning

transfer learning——缓解过拟合
disentangled learning——disentangle the intrinsic spoofing clues from the noisy representation
metric learning
self-supervised and semi-supervised learning

4.3 Real-World Open-Set FAS

GrandTest

4.4 Generic and Unified PA Detection

在这里插入图片描述

AFR-aware and FAS-aware

digital and physical attack types

4.5 Privacy-Preserved Training

federated learning

Last but no least

向「假脸」说 No:用OpenCV搭建活体检测器

活体检测的方法有很多,包括:

  • 纹理分析(Texture analysis),该方法计算了面部区域的局部二值模式(Local Binary Patterns,LBP),用 SVM 将面部分为真实面部和伪造面部;

  • 频率分析(Frequency analysis),比如检查面部的傅立叶域;

  • 可变聚焦分析(Variable focusing analysis),例如检查连续两帧间像素值的变化;

  • 启发式算法(Heuristic-Based algorithms),包括眼球运动、嘴唇运动和眨眼检测。这些算法试图追踪眼球运动和眨眼行为,来确保用户不是拿着谁的照片(因为照片不会眨眼也不会动嘴唇);

  • 光流算法(Optical Flow algorithm),即检测 3D 对象和 2D 平面产生的光流的属性和差异;

  • 3D 面部形状(3D face shape),类似于 iPhone 上的面部识别系统,这种算法可以让面部识别系统区分真实面部和其他人的照片或打印出来的图像;


暂时下载不到的文章 for free

  • Unknown presentation attack detection with face rgb images
  • Fake iris detection using structured light
  • FaceRevelio: a face liveness detection system for smartphones with a single front camera
  • Meaningful adversarial stickers for face recognition in physical world

阅读笔记

  • 【DDFD】《Multi-view Face Detection Using Deep Convolutional Neural Networks》(ICMR-2015)

  • 【IoU Loss】《UnitBox: An Advanced Object Detection Network》(ACM MM-2016)

  • 【FAS】《Face Anti-Spoofing Using Patch and Depth-Based CNNs》(IJCB-2017)

  • 【MLFP】《Face Presentation Attack with Latex Masks in Multispectral Videos》(CVPRW-2017)

  • 【Face Detection】《Face Detection using Deep Learning: An Improved Faster RCNN Approach》(Neurocomputing-2018)

  • 【GDConv】《MobileFaceNets:Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices》(CCBR-2018)

  • 【CASIA-SURF】《A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing》(CVPR-2019)

  • 【FAS-FRN】《Recognizing Multi-modal Face Spoofing with Face Recognition Networks》(CVPR-2019 workshop)

  • 【FaceBagNet】《FaceBagNet:Bag-of-local-features Model for Multi-modal Face Anti-spoofing》(CVPR-2019 workshop)

  • 【FeatherNets】《FeatherNets:Convolutional Neural Networks as Light as Feather for Face Anti-spoofing》(CVPR-2019 workshop)

  • 【WMCA】《Biometric Face Presentation Attack Detection with Multi-Channel Convolutional Neural Network》(TIFS-2019)

  • 【WebFace260M】《WebFace260M:A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition》(CVPR-2021)

  • 【EMFace】《EMface: Detecting Hard Faces by Exploring Receptive Field Pyramids》(arXiv-2021)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/659558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot-前后端分离——第二篇

本篇主要介绍一个发送请求的工具—postman&#xff0c;然后对请求中的参数进行介绍&#xff0c;例如简单参数、实体参数、数组参数、集合参数、日期类型参数以及json类型参数&#xff0c;对这些参数接收进行总结。最后对响应数据进行介绍&#xff0c;使用统一响应结果返回浏览器…

轮转数组[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给定一个整数数组nums&#xff0c;将数组中的元素向右轮转k个位置&#xff0c;其中k是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,…

八数码问题dfs

import java.util.*;public class Main{static String end "12345678x";public static void swap(char[] arr,int x,int y){char temp arr[x];arr[x] arr[y];arr[y] temp;}public static int bfs(String start){//key:String 存放12345678x这种格式的字符//value…

Centos7安装原生Nginx并配置反向代理

一、背景 当我的应用程序需要集群化部署之时&#xff0c;必然需要一个反向代理&#xff0c;当然Nginx的大名&#xff0c;这里不做更多的介绍了&#xff0c;这里介绍一下Nginx常用的四大阵营 1 Ngnix 原生版本 nginx news 2 Nginx Plus 商用版&#xff08;收费的&#xff09…

20240127在ubuntu20.04.6下配置whisper

20240131在ubuntu20.04.6下配置whisper 2024/1/31 15:48 首先你要有一张NVIDIA的显卡&#xff0c;比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡&#xff01;】800&#xffe5; 2、请正确安装好NVIDIA最新的驱动程序和CUDA。可选安装&#xff01; 3、配置whispe…

经典左旋,指针面试题

今天给大家带来几道面试题&#xff01; 实现一个函数&#xff0c;可以左旋字符串中的k个字符。 例如&#xff1a; ABCD左旋一个字符得到BCDA ABCD左旋两个字符得到CDAB 我们可以先自己自行思考&#xff0c;下面是参考答案&#xff1a; 方法一&#xff1a; #define _CRT_SEC…

力扣hot100 划分字母区间 贪心 思维 满注释版

Problem: 763. 划分字母区间 文章目录 思路复杂度Code 思路 &#x1f468;‍&#x1f3eb; 代码随想录 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( n ) O(n) O(n) Code class Solution {public List<Integer> partitionLabels(String s){// 创建哈希…

神经网络的一些常规概念

epoch&#xff1a;是指所有样本数据在神经网络训练一次&#xff08;单次epoch(全部训练样本/batchsize)/iteration1&#xff09;或者&#xff08;1个epochiteration数 batchsize数&#xff09; batch-size&#xff1a;顾名思义就是批次大小&#xff0c;也就是一次训练选取的样…

Vue中使用定义的函数时,无法访问到data()里面的数据

const translateItems1 () > {this.translatedItems this.items1.map(item > {return {...item,label: this.$t(item.labelKey)};}); items1是我们data()里面的数据&#xff0c;无法访问到 解决办法 把箭头函数替换为普通函数 const translateItems1 function() {th…

EXCEL VBA实现重复字段出现次数并列显示

EXCEL VBA实现重复字段出现次数并列显示 Sub dotest() Dim arr, dApplication.ScreenUpdating FalseSet d CreateObject("Scripting.Dictionary")With Sheets("Sheet2")r .Cells(.Rows.Count, "a").End(xlUp).Rowarr .[a1].Resize(r, 1)En…

HTML标签 - 1

文章目录 HTML标签简介HTML书写规范常见网页制作软件常用标签结构标签排版标签标题标签容器标签字体标签文本格式化标签列表标签图片标签 HTML标签 简介 一门使用标记标签来描述网页&#xff0c;展示信息给用户的语言。 超文本标记语言&#xff08;Hyper Text Markup Langua…

WMS系统与电商平台快速拉通库存数量

什么是WMS系统 WMS系统是指仓储管理系统&#xff08;Warehouse Management System&#xff09;。它是一种用于管理和控制仓库运营的软件系统。WMS系统通过集成信息技术&#xff0c;提供仓库内货物的存储、出入库、库存管理、订单处理等功能&#xff0c;优化仓库的运作效率和准…

Flask 入门3:Flask 请求上下文与请求

1. 前言 Flask 在处理请求与响应的过程&#xff1a; 首先我们从浏览器发送一个请求到服务端&#xff0c;由 Flask 接收了这个请求以后&#xff0c;这个请求将会由路由系统接收。然后在路由系统中&#xff0c;还可以挂入一些 “勾子”&#xff0c;在进入我们的 viewFunction …

adb 无线连接 操作Android设备

最近集五福活动比较热门 可以用这个工具 用自己擅长的语言写一个循环程序 运行起来就可以 自动帮我们 看视频得福卡了 很方便 while (true) {sleep(mt_rand(15, 25));system(adb shell input swipe 500 2000 500 1000 100); } 1. 首先下载 安卓开发工具 adb adb网盘链接 链接…

Django中的模板

目录 一:基本概念 二&#xff1a;模板继承 在Django中&#xff0c;模板是用于呈现动态内容的HTML文件。它们允许你将动态数据与静态模板结合起来&#xff0c;生成最终的HTML页面。 Django模板使用特定的语法和标签来插入动态内容。你可以在模板中使用变量、过滤器和标签来控…

【HarmonyOS】鸿蒙开发之HTTP网络请求——第5章

HTTP网络请求封装 network/request.ets import { configInterface } from ./type import http from ohos.net.http import { getToken } from ../utils/storage//网络请求封装 export const request (config:configInterface)>{let httpRequest:http.HttpRequest http.c…

IDEA 取消参数名称提示、IDEA如何去掉变量类型提醒

一、IDEA 取消参数名称显示 取消显示形参名提示 例如这样的提示信息 二、解决方法 1、File—>Setting–>Editor—>Inlay Hints—>Java 去掉 Show Parameter hints for 前面的勾即可&#xff0c;然后Apply—>Ok 2、右键Disable Hints

强敌环伺:金融业信息安全威胁分析——整体态势

从早期的Zeus和其他以银行为目标的特洛伊木马程序&#xff0c;到现在的大规模分布式拒绝服务&#xff08;DDoS&#xff09;攻击&#xff0c;再到新颖的钓鱼攻击和勒索软件&#xff0c;金融服务业已成为遭遇网络犯罪威胁最严重的行业之一。金融服务业的重要性不言而喻&#xff0…

【AI视野·今日NLP 自然语言处理论文速览 第七十七期】Mon, 15 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 15 Jan 2024 Totally 57 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Machine Translation Models are Zero-Shot Detectors of Translation Direction Authors Michelle Wastl, Ja…

docker私有库

1.registry私有仓库 拉取registry镜像 docker pull registry 修改docker配置文件并重启 vim /etc/docker/daemon.json {"insecure-registries": ["172.16.23.23:5000"], #添加&#xff0c;注意用逗号结尾"registry-mirrors": ["ht…