机器学习_无监督学习之聚类

文章目录

  • 介绍机器学习下的分类
  • K均值算法
  • K值的选取:手肘法
  • 用聚类辅助理解营销数据
  • 贴近项目实战


介绍机器学习下的分类

在这里插入图片描述
以下介绍无监督学习之聚类
聚类是最常见的无监督学习算法。人有归纳和总结的能力,机器也有。聚类就是让机器把数据集中的样本按照特征的性质分组,这个过程中没有标签的存在。

聚类和监督学习中的分类问题有些类似,其主要区别在于:传统分类问题“概念化在前”。机器首先是学习概念,然后才能够做分类、做判断。

而聚类不同,虽然本质上也是“分类”,但是“概念化在后”或者“不概念化”,在给一堆数据分组时,没有任何此类、彼类的概念。

聚类也有好几种算法,K均值(K-means)是其中最常用的一种。

K均值算法

K均值算法是最容易理解的无监督学习算法。算法简单,速度也不差,但需要人工指定K值,也就是分成几个聚类。具体算法流程如下。

  • (1)首先确定K的数值,比如5个聚类,也叫5个簇。
  • (2)然后在一大堆数据中随机挑选K个数据点,作为簇的质心(centroid )。这些随机质心当然不完美,别着急,它们会慢慢变得完美。
  • (3)遍历集合中每一个数据点,计算它们与每一个质心的距离(比如欧氏距离)。数据点离哪个质心近,就属于哪一类。此时初始的K个类别开始形成。
  • (4)这时每一个质心中都聚集了很多数据点,于是质心说,你们来了,我就要“退役”了(这个是伟大的“禅让制度”啊!),选一个新的质心吧。然后计算出每一类中最靠近中心的点,作为新的质心。此时新的质心会比原来随机选的靠谱一些(等会儿用图展示质心的移动)。
  • (5)重新进行步骤(3),计算所有数据点和新的质心的距离,在新的质心周围形成新的簇分配(“吃瓜群众”随风飘摇,离谁近就跟谁)。
  • (6)重新进行步骤(4),继续选择更好的质心(一代一代地“禅让”下去)。
  • (7)一直重复进行步骤(5)和(6),不断更新簇中的数据点,不断找到新的质心,直至收敛。

通过下面这个图,可以看到聚类中质心的移动和簇形成的过程。
在这里插入图片描述

K值的选取:手肘法

直观的手肘法(elbow method )进行簇的数量的确定。手肘法是基于对聚类效果的一个度量指标来实现的,这个指标也可以视为一种损失。在K值很小的时候,整体损失很大,而随着K值的增大,损失函数的值会在逐渐收敛之前出现一个拐点。此时的K值就是比较好的值。
大家看下面的图,损失随着簇的个数而收敛的曲线有点像只手臂,最佳K值的点像是手肘,因此取名为手肘法。
在这里插入图片描述

用聚类辅助理解营销数据

1.问题定义:为客户分组
(1)通过这个数据集,理解K均值算法的基本实现流程。
(2)通过K均值算法,给客户分组,了解每类客户消费能力的差别。

2.数据读入

import numpy as np # 导入NumPy
import pandas as pd # 导入pandas
import warnings
warnings.filterwarnings("ignore")dataset = pd.read_csv('../数据集/Customers Cluster.csv')
dataset.head() # 显示一些数据# 只针对两个特征进行聚类,以方便二维的展示
X= dataset.iloc[:, [2,4]].values

在这里插入图片描述

Spending Score:消费分数(归一化成一个0~1的分数)

3.聚类的拟合
下面尝试用不同的K值进行聚类的拟合:

from sklearn.cluster import KMeans # 导入聚类模型
cost=[] # 初始化损失(距离)值
for i in range(1,11): # 尝试不同的K值kmeans = KMeans(n_clusters= i, init='k-means++', random_state=0)kmeans.fit(X) # 拟合模型cost.append(kmeans.inertia_) #inertia_是度量数据点到聚类中心的度量公式

4.绘制手肘图

import matplotlib.pyplot as plt # 导入Matplotlib
import seaborn as sns  # 导入Seaborn
%matplotlib inline
# 绘制手肘图 
plt.plot(range(1,11), cost)
plt.title('The Elbow Method')
plt.xlabel('no of clusters')
plt.ylabel('Cost')
plt.show()

在这里插入图片描述

从手肘图上判断,肘部数字大概是3或4,我们选择4作为聚类个数

# 构建聚类模型
kmeansmodel = KMeans(n_clusters= 4, init='k-means++') # 选择4作为聚类个数
y_kmeans= kmeansmodel.fit_predict(X) # 进行聚类的拟合和分类

5.把分好的聚类可视化

# 把分好的聚类可视化
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
# plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Age')
plt.ylabel('Spending Score')
plt.legend()
plt.show()

在这里插入图片描述

这个客户的聚类问题就解决了。其中,黄色高亮的大点是聚类的质心,可以看到算法中的质心并不止一个。

贴近项目实战

可见 Python综合数据分析_RFM用户分组模型


学习机器学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法

(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/659328.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 使用WebSocket功能

实现步骤&#xff1a; 1.导入WebSocket坐标。 在pom.xml中增加依赖项&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>2.编写WebSocket配…

TCP四次握手

TCP 协议在关闭连接时&#xff0c;需要进行四次挥手的过程&#xff0c;主要是为了确保客户端和服务器都能正确地关闭连接。 # 执行流程 四次挥手的具体流程如下&#xff1a; 客户端发送 FIN 包&#xff1a;客户端发送一个 FIN 包&#xff0c;其中 FIN 标识位为 1&#xff0c…

小程序软件测试应该怎么做?有什么作用?

近年来&#xff0c;随着移动互联网的快速发展&#xff0c;小程序软件的使用越来越广泛。无论是企业推广还是个人创作&#xff0c;小程序软件都具备了很大的潜力和市场空间。然而&#xff0c;在发布之前&#xff0c;进行充分的测试是至关重要的&#xff0c;以确保用户体验的顺畅…

【ARM Trace32(劳特巴赫) 使用介绍 3.1 -- 不 attach core 直接访问 memory】

文章目录 背景介绍背景介绍 在使用 trace32 时在有些场景需要不 attach core 然后去读写 memory,比如在某些情况下 core 已经挂死连接不上了,这个时候需要dump内存,这个时候需要怎做呢? print "test for memory access directly";SYStem.OPTION WAITRESET OF…

推荐系统|排序_多目标模型

文章目录 四大特征用户特征物品特征统计特征场景特征 训练过程中会遇到的问题 四大特征 ID相当于是人拥有的身份证&#xff0c;能够唯一确定出一个人 用户特征 主要指的是用户ID和用户画像 物品特征 主要是指物品ID和物品画像以及物品持有人。 统计特征 统计特征既包括对…

miniReact<一>

一、工程化配置 1.1 目录结构 1.1.1 Multi-repo VS Mono-repo Multi-repo 每个库有自己独立的仓库&#xff0c;逻辑清晰&#xff0c;协同管理复杂 Mono-repo 很方便管理不同独立的库的生命周期&#xff0c;会有更高的操作复杂度 项目有很多包&#xff0c;同时管理多个不同的…

数据可视化工具之选,三选一?

在数据可视化的世界中&#xff0c;选择一款合适的工具对于提升工作效率和洞察力至关重要。本文将对三款主流数据可视化工具进行详细比较&#xff0c;包括山海鲸可视化、Echarts和D3.js&#xff0c;以帮助您做出明智的选择。 山海鲸可视化 山海鲸可视化是一款免费且功能强大的…

Kafka 生产者缓存

不建议使用&#xff1a; public void produce(String message) {DmsProducer<String, String> producer new DmsProducer<String, String>();try {producer.produce("test1",0, "key", message);} finally {producer.close();} }原因&#x…

【开源】基于JAVA+Vue+SpringBoot的康复中心管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 普通用户模块2.2 护工模块2.3 管理员模块 三、系统展示四、核心代码4.1 查询康复护理4.2 新增康复训练4.3 查询房间4.4 查询来访4.5 新增用药 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的康复中…

【Leetcode】2808. 使循环数组所有元素相等的最少秒数

文章目录 题目思路代码结果 题目 题目链接 给你一个下标从 0 开始长度为 n 的数组 nums 。 每一秒&#xff0c;你可以对数组执行以下操作&#xff1a; 对于范围在 [0, n - 1] 内的每一个下标 i &#xff0c;将 nums[i] 替换成 nums[i] &#xff0c;nums[(i - 1 n) % n] 或者…

单细胞转录组数据分析的10大软件/流程

单细胞数据分析现在已经有上千个软件工具可供使用了&#xff0c;这为用户带来便利的同时也造成了选择困难。就像时间一样&#xff0c;一个表&#xff0c;没问题&#xff0c;但如果有两个表&#xff0c;时间还不一样&#xff0c;该信谁的呢&#xff1f; 正好我们前面一篇文章介绍…

LRU 缓存置换策略:提升系统效率的秘密武器(上)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

坚持刷题 | 完全二叉树的节点个数

Hello&#xff0c;大家好&#xff0c;我是阿月&#xff01;坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;今天刷&#xff1a;完全二叉树的节点个数 题目 222.完全二叉树的节点个数 代码实现 class TreeNode {int val;TreeNode left, right;public TreeNode(int val) …

springboot141夕阳红公寓管理系统的设计与实现

基于Spring Boot的夕阳红公寓管理系统的设计与实现 摘 要 如今社会上各行各业&#xff0c;都在用属于自己专用的软件来进行工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。互联网的发展&#xff0c;离不开一些新的技术&#xff0c;而新技术的…

Lua脚本

1.准备 1.简介 1.Lua是一种轻量小巧的脚本语言&#xff0c;用标准C语言编写并以源代码形式开放 2.目标 1.其设计目的是为了嵌入应用程序中&#xff0c;从而为应用程序提供灵活的扩展和定制功能 3.特点 1.轻量级&#xff1a;用标准C语言编写并以源代码形式开放&#xff0c;编译后…

【Qt】—— Qt Creator界⾯认识

目录 &#xff08;一&#xff09;左边栏 &#xff08;二&#xff09;代码编辑区 &#xff08;三&#xff09;UI设计界⾯ &#xff08;四&#xff09;构建区 &#xff08;一&#xff09;左边栏 在编辑模式下&#xff0c;左边竖排的两个窗⼝叫做"边栏"。 ①是项⽬…

动手实践WebVR 全景

前言 近年来VR概念越来越火&#xff0c;相信大家在网上都有过VR的浏览体验&#xff0c;比如VR全景看房[1]、VR全景看车[2]、VR全景旅游[3]等等&#xff0c;VR全景给了我们视觉上的沉浸式体验。本文将会简单探究Web VR全景的实现原理&#xff0c;同时也会用threejs实现两个小的…

Linux文本三剑客-sed

一、sed介绍&#xff1a; sed&#xff08;Stream Editor&#xff09;是一种流编辑器&#xff0c;用于对文本进行处理和转换。它可以从输入流中读取文本&#xff0c;并根据指定的规则进行编辑和替换。sed通常用于在命令行中进行文本处理&#xff0c;可以实现搜索、替换、删除、…

Vmware 无法开启虚拟化解决方法

最近遇到了Vmware无法开启虚拟化的问题,已经解决,记录一下解决经过。 我遇到的情况是BIOS已经开启虚拟化,HV服务也停用了,但是Vmware仍然提示模块“VPMC”启动失败。网上的解决方案千篇一律,基本都是排查BIOS、停用Windows的虚拟化功能、停用HV主机服务、Vmware配置中关闭…

【开源】SpringBoot框架开发天然气工程运维系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统角色分类2.2 核心功能2.2.1 流程 12.2.2 流程 22.3 各角色功能2.3.1 系统管理员功能2.3.2 用户服务部功能2.3.3 分公司&#xff08;施工单位&#xff09;功能2.3.3.1 技术员角色功能2.3.3.2 材料员角色功能 2.3.4 安…