不建议使用:
public void produce(String message) {DmsProducer<String, String> producer = new DmsProducer<String, String>();try {producer.produce("test1",0, "key", message);} finally {producer.close();}
}
原因:
每次调用produce函数时,都会新建一个producer,每次都需要进行新建与broker连接->获取分区元数据->生产消息的过程,存在性能瓶颈
正确用法:
private DmsProducer producer;public void init() {this.producer = new DmsProducer();
}public void produce(String message) {if (producer == null) {this.init();}produce(message);
}public void tearDown() {if (this.producer != null) {producer.close();}
}
进阶优化:
按照上面的使用方式,如果在多线程的环境下,可能会出现一个producer单个sender线程会有性能瓶颈(单发送线程),可能导致,导致入大于出,最终缓存堆积
示例代码:
private ProducerLru cache = new ProducerLru(5);
class ProducerLru<k, v> extends LinkedHashMap<k, v> {private int capacity;public ProducerLru(int capacity) {super(capacity, 0.75f, true);this.capacity = capacity;}@Overrideprotected boolean removeEldestEntry(Map.Entry<k, v> eldest) {if (size() > capacity) {if (eldest.getValue() instanceof DmsProducer) {DmsProducer producer = (DmsProducer) eldest.getValue();producer.close();}}return super.size() > capacity;}}public static void main(String[] args) throws Exception {Main main = new Main();String topicA = "topicA";DmsProducer producer;if (main.cache.get(topicA) != null) {producer = (DmsProducer) main.cache.get(topicA);main.cache.put(topicA, producer);} else {producer = new DmsProducer();}main.cache.put(topicA, producer);
}
上述示例中,producerLru的key可以是topic名称,如果是多个用户场景下,也可以以用户名作为key,可以根据实际业务场景进行调整