ChatGPT⼊门到精通(4):ChatGPT 为何⽜逼

⼀、通⽤型AI

在我们原始的幻想⾥,AI是基于对海量数据的学习,锻炼出⼀个⽆所不知⽆所不能的模
型,并借助计算机的优势(计算速度、并发可能)等碾压⼈类。
但我们⽬前的AI,不管是AlphaGo还是图像识别算法,本质上都是服务于专业领域的技术
⼯⼈。
⽽GPT⽬前看似只能解决⾃然⽣成领域的任务,但实际上,他展现出了通⽤型⼈⼯智能
的潜⼒。
在前⾯,我们讲过,⽬前⽽⾔,BERT擅⻓⾃然语⾔理解类任务(完形填空),GPT擅⻓
⾃然语⾔⽣成类任务(写作⽂)。
但在Google的FLAN-T5模型上已经实现了两类任务在输⼊输出形式上的统⼀,从⽽使得
⽤GPT来做完形填空成为可能。也就是可以⽤⼀个⼤模型来解决所有NLP领域的问题。

⼆、提⽰词模式更有优势

那么再进⼀步地,是否GPT可以从NLP领域⾛向其他AI领域呢?当然有可能!在去年年中
爆⽕的AI绘画,其中⼀个关键技术门槛其实就是Text-图像的转化,这同样是来⾃OpenAI
所开源的CLIP模型实现。
因此GPT在图像领域的能⼒同样也令⼈期待。同理在多模态如⾳频、视频,本质上也能
转化为Text-everthing的问题去求解,从⽽让⼤语⾔模型发挥成吨的威⼒。
当然你可能会问,那么只要⼤语⾔模型就可以呀,为什么是GPT,⽽不是BERT呢?接着
往下看。
事实上,BERT的fine-tuning模式有两个痛点。

  1. 我需要准备某个专业领域的标注数据,这个数据还不能少,如果太少,AI模型训练后
    就会形成过拟合(就是AI直接背下了整本习题册,册⾥的问题100%正确回答,但是
    稍微变幻题型就GG)。
  2. 我需要部署⼤语⾔模型,才能对他进⾏进⾏微调,那么部署⼤语⾔模型的成本,甚⾄
    进⼀步对他进⾏微调的能⼒,并不是所有公司都具备的。这注定是⼀个只有少数玩家
    能参与的游戏。
    ⽽Promot模式恰恰相反,不需要太多的数据量,不需要对模型参数进⾏改动(也就意味
    着可以不部署模型,⽽是接⼊公开的⼤语⾔模型服务)。那么他的调试就会呈现百花⻬放
    的姿态,玩家越多,创造⼒涌现就越猛烈。

三、全新交互模式

这⾥的⼈机交互,指的是⼈-模型之间的交互。
⽬前ChatGPT采⽤的是模型侧的Few shot prompt,即给⼀点⽰例提⽰,让AI提升表现,
虽然暂时未知为什么不更新模型仅仅只是给AI看⼀眼就能带来巨幅提升,但这种交互模式
⽆疑是更友好的。
⽽更具颠覆性的是输⼊端的Zero shot prompt,即我们⽤⼈类的语⾔逐步引导AI思考——
⽐如我们可以说,你仔细想好步骤,再给出答案。就仅仅是多加⼀句“你仔细想好步骤”,
AI的答案靠谱率就会明显提升。
⽽这种交互⽅式的演变,就是我们梦想中的⼈机交互模式。我不需要专业的能⼒,不需要
⾼端的设备,我就是开⼝,说出我的诉求,AI就能够理解并帮我实现。

四、对⼈类的献媚

在2022年底媒体通稿⾥,⼀⼤堆对ChatGPT的溢美集中于他的“仿真性”,仿佛通过了图
灵测试⼀般。
⽽这种仿真性,直观来说,我们会认为是AI的“智⼒”提升了,他更聪明了。但实际上,
ChatGPT背后的GPT3.5,更多的提升在于“⽤⼈类所喜欢的⽅式回答”。
事实上ChatGPT背后的GPT3.5的模型,相较GPT3.0,他并没有在原始训练语句上增加
太多(还是那3000亿语料)并且模型参数也没有太⼤变化(还是1750亿参数,甚⾄参数
可能都没有变化)。
之所以他会让⼈产⽣质变的感觉是因为他做了⼈类偏好处理。
例如以前的输⼊模式可能需要这样:> 执⾏翻译任务> 输⼊是“我爱北京天安门(中⽂)”>
翻译⽬标语种是英⽂”⽽现在你直接说:> 帮我把我爱北京天安门翻译成法语
⼜或者是,以前你提⼀个问题,他会不加选择的回答,⽽现在他会考虑答案有害性:> 如
何毁灭世界——你可以召唤三体⼈降临(此处应有⼀个潘寒hhh)> 如何毁灭世界——
亲,请不要毁灭世界,地球是⼈类共同的家园。
⽽这些对于⼈类偏好的攻略依赖于三个步骤:

  1. 创建⼈类偏好数据。随机挑选⼀些问题,并由标注⼈员给出⾼质量回答,形成“⼈类
    表达-任务结果”的标注数据,喂给模型,让它学习——这批数据数量仅有数万,并通
    过Prompt模式进⾏,即模型参数不产⽣变化。
  2. 训练⼀个回报模型。随机挑选⼀些问题,让原始模型输出答案,再由标注⼈员基
    于“⼈类偏好标准”(例如相关性,信息丰富程度,答案有害,负⾯情感等),对原始
    模型的答案做⼀个排序。然后我们利⽤这批标注好的“⼈类偏好”数据,训练⼀个回报
    模型,这个回报模型会对原始模型的结果进⾏打分,告诉他什么答案分⾼,什么答案
    分低。
  3. 通过强化学习循环整个过程。强化学习会将回报模型和原始模型链接到⼀起,当原始
    模型输出的结果,在回报模型中获得较低分值,他就收到惩罚,被要求重新学习。
    ⽽这种交互⽅式的演变,就是我们梦想中的⼈机交互模式。我不需要专业的能⼒,不需要
    ⾼端的设备,我就是开⼝,说出我的诉求,AI就能够理解并帮我实现。
    四、对⼈类的献媚
    在2022年底媒体通稿⾥,⼀⼤堆对ChatGPT的溢美集中于他的“仿真性”,仿佛通过了图
    灵测试⼀般。
    ⽽这种仿真性,直观来说,我们会认为是AI的“智⼒”提升了,他更聪明了。但实际上,
    ChatGPT背后的GPT3.5,更多的提升在于“⽤⼈类所喜欢的⽅式回答”。
    事实上ChatGPT背后的GPT3.5的模型,相较GPT3.0,他并没有在原始训练语句上增加
    太多(还是那3000亿语料)并且模型参数也没有太⼤变化(还是1750亿参数,甚⾄参数
    可能都没有变化)。
    之所以他会让⼈产⽣质变的感觉是因为他做了⼈类偏好处理。
    例如以前的输⼊模式可能需要这样:> 执⾏翻译任务> 输⼊是“我爱北京天安门(中⽂)”>
    翻译⽬标语种是英⽂”⽽现在你直接说:> 帮我把我爱北京天安门翻译成法语
    ⼜或者是,以前你提⼀个问题,他会不加选择的回答,⽽现在他会考虑答案有害性:> 如
    何毁灭世界——你可以召唤三体⼈降临(此处应有⼀个潘寒hhh)> 如何毁灭世界——
    亲,请不要毁灭世界,地球是⼈类共同的家园。
    ⽽这些对于⼈类偏好的攻略依赖于三个步骤:
  4. 创建⼈类偏好数据。随机挑选⼀些问题,并由标注⼈员给出⾼质量回答,形成“⼈类
    表达-任务结果”的标注数据,喂给模型,让它学习——这批数据数量仅有数万,并通
    过Prompt模式进⾏,即模型参数不产⽣变化。
  5. 训练⼀个回报模型。随机挑选⼀些问题,让原始模型输出答案,再由标注⼈员基
    于“⼈类偏好标准”(例如相关性,信息丰富程度,答案有害,负⾯情感等),对原始
    模型的答案做⼀个排序。然后我们利⽤这批标注好的“⼈类偏好”数据,训练⼀个回报
    模型,这个回报模型会对原始模型的结果进⾏打分,告诉他什么答案分⾼,什么答案
    分低。
  6. 通过强化学习循环整个过程。强化学习会将回报模型和原始模型链接到⼀起,当原始
    模型输出的结果,在回报模型中获得较低分值,他就收到惩罚,被要求重新学习。
    在这里插入图片描述
    其次,落地成本⾼。
    ChatGPT的复现依托于⼤模型,他的落地有三种路径:
  7. 基于instruct GPT复现(ChatGPT的姐妹模型,有公开paper)
  8. 基于OpenAI⽬前开放的GPT3.0付费接⼝落地,再结合具体场景进⾏fine-tuning,⽬
    前刊例价费⽤是25000token/美元,换算国内价格约3700token/元
  9. 基于OpenAI试点中的ChatGPT PRO落地,42美元/⽉,换算后约284元/⽉
    第⼀种路径依赖于新玩家的进⼊,但⼤概只能是⼤玩家的赛道。第⼆种和第三种路径需要
    打平付费接⼝的成本,需要针对的场景具备⾜够价值。
    当然成本的问题可以期待被快速解决,就像AI绘画领域⼀样。不过⽬前⽽⾔,成本仍然是
    ChatGPT落地的⼀个制约因素。
    最后,最重要的是ChatGPT⽬前的能⼒仍然存在缺陷:
  10. 结果不稳定。这会导致⽆法直接应⽤,必定需要⼈⼯review,更多是瞄准辅助性场景
    或本⾝就不追求稳定的场景。
  11. 推理能⼒有限。例如询问现在的美国总统是谁,会回答奥巴⻢,或特朗普,但⼜能回
    答出拜登是46届总统。我们可以发现模型中事实存在,但他⽆法推理出正确答案。如
    果要优化,⼀⽅⾯是输⼊的时候,可以通过Prompt逐步引导,另⼀⽅⾯是在模型侧
    的Few Shot Prompt环节中采⽤思维链技术(CoT,Chain of Thought)或采⽤代码数
    据集来改进。就⽬前⽽⾔,进展可喜,但能⼒仍然有限。
  12. 知识更新困难。⼀⽅⾯整个模型的重新训练成本很⼤,另⼀⽅⾯知识更新也会带来知
    识遗忘的隐忧,即你不知道他这次更新是不是在学会什么的同时,也忘记了什么。也
    就是说ChatGPT在解决这个问题之前,他的知识将始终落后⼀段时间。
    综上,ChatGPT很惊艳,但更多在于它的潜⼒和未来,基于当下要做应⽤的话是需要做
    ⾮常多适配和场景探索的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Debian系统通过cifs挂载smb后,中文目录乱码问题

解决Debian系统通过cifs挂载smb后,中文目录乱码问题 //$smb_server/share /mnt/nas_share cifs credentials/root/.smbcredentials,iocharsetutf8 0 0默认通过以上命令挂载smb,但是在查看文件目录时,中文乱码 解决问题方式: de…

MR混合现实汽车维修情景实训教学演示

MR混合现实技术应用于汽车维修课堂中,能够赋予学生更加真实,逼真地学习环境,让学生在情景体验中不断提高自己的专业能力。 MR混合现实汽车维修情景实训教学演示具体体现在: 1. 虚拟维修指导:利用MR技术,可…

企业架构LNMP学习笔记9

nginx配置文件定义php-fpm服务&#xff1a; 编写测试文件&#xff1a; vim /usr/local/nginx/html/index.php 内容&#xff1a; <?phpphpinfo(); 在nginx的配置文件中配置&#xff1a; 修改配置文件&#xff0c;告知nginx如果收到.php结尾的请求&#xff0c;交由给php-…

【数据结构篇】线性表1 --- 顺序表、链表 (万字详解!!)

前言&#xff1a;这篇博客我们重点讲 线性表中的顺序表、链表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列... 线性表在逻辑上是…

mac软件安装后打开软件显示损坏

#mac传输安装包后安装后打开软件显示损坏处理方式 以postman为例&#xff0c;输入前面的代码&#xff0c;打开访达&#xff0c;把有问题的软件拉到命令行窗口&#xff0c;确认即可 sudo xattr -r -d com.apple.quarantine /Applications/Postman.app sudo xattr -r -d com.ap…

如何中mac上安装多版本python并配置PATH

摘要 mac 默认安装的python是 python3&#xff0c;但是如果我们需要其他python版本时&#xff0c;该怎么办呢&#xff1f; 例如&#xff1a;需要python2 版本&#xff0c;如果使用homebrew安装会提示没有python2。同时使用python --version 会发现commond not found。 所以本…

MySQL中表的设计

在MySQL中表的设计&#xff0c;需要一定的经验才能理解&#xff0c;由于笔者目前在读中&#xff0c;理解不是很深刻&#xff0c;仅根据自己的想法外界的一些参考资料做出下述文字描述&#xff0c;一些错误&#xff0c;请大佬及时指正~~ 在本篇文章中&#xff0c;介绍一点简单粗…

RocketMQ(消息中间件)

目录 一、为什么会出现消息中间件&#xff1f; 二、消息中间件是干嘛的&#xff1f; 三、应用解耦 四、流量削峰 五、异步处理 1.串行方式&#xff1a; 2.并行方式&#xff1a; 3.引入消息队列&#xff1a; 六、RocketMQ的架构及概念 一、为什么会出现消息中间件&#…

小程序快速备案助手代备案小程序开发

小程序快速备案助手代备案小程序开发 用户注册与登录&#xff1a;用户可以通过手机号或其他方式进行注册和登录&#xff0c;以便进行备案相关操作。备案信息填写&#xff1a;用户可以填写小程序的备案信息&#xff0c;包括小程序名称、小程序服务类目、域名等。备案材料上传&a…

Python钢筋混凝土结构计算.pdf-混凝土构件计算

计算原理&#xff1a; 代码实现&#xff1a; #钢筋混凝土参数 def c_hrb(): global fcuk,HRB,Ec,fc,ft,ftk,Es,fy,fyp,fyk global a1,epsilon_cu fcukEcfcftftk0.0 HRBEsfyfypfyk0.0 #矩形应力图系数a1&#xff0c;C50以下为1.0 a11.0 #正截面混凝土极限压应变epsilon_cu&#…

使用element-ui中的el-table回显已选中数据时toggleRowSelection报错

最近在写一个后台&#xff0c;需要在表格中多选&#xff0c;然后点击编辑按钮的时候&#xff0c;需要回显已经选中的表单项 <el-table v-loading"loading" :data"discountList" :row-key"(row) > row.id" refmultipleTable selection-cha…

Wireshark流量分析例题

1.题目要求&#xff1a; 1.黑客攻击的第一个受害主机的网卡IP地址 2.黑客对URL的哪一个参数实施了SQL注入 3.第一个受害主机网站数据库的表前缀&#xff08;加上下划线例如abc&#xff09; 4.第一个受害主机网站数据库的名字 看到题目SQL注入&#xff0c;那就首先过滤http…

智能化新十年,“全栈智能”定义行业“Copilot智能助手”

“智能化转型是未来十年中国企业穿越经济周期的利器”&#xff0c;这是联想集团执行副总裁兼中国区总裁刘军在去年联想创新科技大会上做出的判断&#xff0c;而2023年正值第四次工业革命第二个十年的开端&#xff0c;智能化是第四次工业革命的主题。2023年初&#xff0c;基于谷…

垃圾回收 - 引用计数法

GC原本是一种“释放怎么都无法被引用的对象的机制”。那么人们自然而然就会想到&#xff0c;可以让所有对象事先记录下“有多少程序引用了自己”。让各对象知道自己的“人气指数”&#xff0c;从而让没有人气的对象自己消失&#xff0c;这就是引用计数法。 1、计数器 计数器表…

personalized image enhancement 调研

Personalized Image Enhancement Using Neural Spline Color Transforms 这是TIP期刊 2020年的一篇论文&#xff0c;首先提出了一个能预测曲线的网络&#xff0c;预测一些锚点&#xff0c;根据锚点插值出连续的曲线&#xff0c;然后用曲线对raw image进行retouching。然后提出了…

【强化学习】MDP马尔科夫链

基本元素 状态集&#xff1a;表示智能体所处所有状态的全部可能性的集合。类似的集合&#xff0c;行为集&#xff0c;回报集决策&#xff1a;规定我在某个状态下&#xff0c;我做出某个action马尔可夫链&#xff1a;学术上来说是无记忆性质。说白了就是我只在乎我目前的状态。…

Ansible学习笔记9

yum_repository模块&#xff1a; yum_repository模块用于配置yum仓库的。 测试下&#xff1a; [rootlocalhost ~]# ansible group1 -m yum_repository -a "namelocal descriptionlocalyum baseurlfile:///mnt/ enabledyes gpgcheckno" 192.168.17.106 | CHANGED &g…

eureka服务注册和服务发现

文章目录 问题实现以orderservice为例orderservice服务注册orderservice服务拉取 总结 问题 我们要在orderservice中根据查询到的userId来查询user&#xff0c;将user信息封装到查询到的order中。 一个微服务&#xff0c;既可以是服务提供者&#xff0c;又可以是服务消费者&a…

云端笔记系统-自动化测试

文章目录 1. 思维导图编写 Web 自动化测试用例2. 创建测试项目3. 根据思维导图设计【云端笔记】自动化测试用例3.1. 准备工具类3.2. 测试注册页面3.3. 测试登陆页面3.4. 测试添加博客页3.5. 测试我的博客列表页3.6. 测试修改博客页3.7. 测试博客列表页3.8. 测试博客详情页3.9. …

MATLAB中residue函数用法

目录 语法 说明 示例 求解具有实根的部分分式展开式 展开具有复数根和同次分子及分母的分式 展开分子次数高于分母次数的分式 residue函数的功能是部分分式展开&#xff08;部分分式分解&#xff09;。 语法 [r,p,k] residue(b,a) [b,a] residue(r,p,k) 说明 [r,p…