目录
- 完全二叉树
LeetCode 222. 完全二叉树的节点个数
完全二叉树
作者:labuladong
如何求一棵完全二叉树的节点个数呢?
// 输入一棵完全二叉树,返回节点总数
int countNodes(TreeNode root);
如果是一个普通二叉树,显然只要向下面这样遍历一边即可,时间复杂度 O(N):
public int countNodes(TreeNode root) {if (root == null) return 0;return 1 + countNodes(root.left) + countNodes(root.right);
}
如果是一棵满二叉树,节点总数就和树的高度呈指数关系:
public int countNodes(TreeNode root) {int h = 0;// 计算树的高度while (root != null) {root = root.left;h++;}// 节点总数就是 2^h - 1return (int)Math.pow(2, h) - 1;
}
完全二叉树比普通二叉树特殊,但又没有满二叉树那么特殊,计算它的节点总数,可以说是普通二叉树和完全二叉树的结合版
判断当前节点引导的子树是不是满二叉,是的话可以直接返回子树结点数,不是的话就往下遍历。由于完全二叉树的性质,左右子树中最多只有一个子树不是满二叉。所以总体的时间复杂度仍然是logn ^ 2。
public int countNodes(TreeNode root) {TreeNode l = root, r = root;// 沿最左侧和最右侧分别计算高度int hl = 0, hr = 0;while (l != null) {l = l.left;hl++;}while (r != null) {r = r.right;hr++;}// 如果左右侧计算的高度相同,则是一棵满二叉树if (hl == hr) {return (int)Math.pow(2, hl) - 1;}// 如果左右侧的高度不同,则按照普通二叉树的逻辑计算return 1 + countNodes(root.left) + countNodes(root.right);
}
开头说了,这个算法的时间复杂度是 O(logN*logN),这是怎么算出来的呢?
直觉感觉好像最坏情况下是 O(N*logN) 吧,因为之前的 while 需要 logN 的时间,最后要 O(N) 的时间向左右子树递归:
return 1 + countNodes(root.left) + countNodes(root.right);
关键点在于,这两个递归只有一个会真的递归下去,另一个一定会触发 hl == hr 而立即返回,不会递归下去。
为什么呢?原因如下:
一棵完全二叉树的两棵子树,至少有一棵是满二叉树:
由于完全二叉树的性质,其子树一定有一棵是满的,所以一定会触发 hl == hr,只消耗 O(logN) 的复杂度而不会继续递归。
综上,算法的递归深度就是树的高度 O(logN),每次递归所花费的时间就是 while 循环,需要 O(logN),所以总体的时间复杂度是 O(logN*logN)。
所以说,「完全二叉树」这个概念还是有它存在的原因的,不仅适用于数组实现二叉堆,而且连计算节点总数这种看起来简单的操作都有高效的算法实现。