Wireshark网络协议分析 - TCP协议

在我的博客阅读本文

文章目录

  • 1. 基础
  • 2. 实战
      • 2.1. 用Go写一个简单的TCP服务器与客户端
      • 2.2. Wireshark抓包分析
      • 2.3. 限制数据包的大小——MSS与MTU
      • 2.4. 保证TCP的有序传输——Seq,Len与Ack
      • 2.5. TCP头标志位——URG,ACK,PSH,RST,SYN,FIN
      • 2.6. TCP连接建立——三次握手
      • 2.7. TCP连接释放——四次挥手
      • 2.8. 大包拆分——累计确认,TCP窗口
      • 2.9. 动态调整TCP窗口——从慢启动到阻塞避免
      • 2.10. 丢包问题——RTO与快速重传
      • 2.11. 减轻网络负担可能降低性能——延迟确认与Nagle算法
  • 3. 参考资料

1. 基础

根据TCP/IP四层模型,在TCP场景下如下图:

Untitled

其中,TCP头的信息:

Untitled

2. 实战

2.1. 用Go写一个简单的TCP服务器与客户端

要分析TCP协议,尽管可以直接使用一个http的访问进行抓包,但是http的过程中又涉及DNSARP等过程混淆我们,为了纯粹的分析TCP协议,我们这里使用Golang写了一个简单的9830端口的TCP服务器与客户端,源代码简单展示如下:

服务端:

package serverimport ("fmt""net""os""strings""test/util"
)func StartTCPServer(c chan<- string) {listener, err := net.Listen("tcp", "localhost:9830")if err != nil {util.HandleError(err)os.Exit(1)}defer listener.Close()c <- "ready"// 等待连接conn, err := listener.Accept()if err != nil {util.HandleError(err)os.Exit(1)}// 处理连接handleRequest(conn)
}func handleRequest(conn net.Conn) {defer conn.Close()var res strings.Builderbuf := make([]byte, 1024)for {n, err := conn.Read(buf)if err != nil {break}res.Write(buf[:n])}fmt.Print("Received client message, size:", res.Len())
}

客户端:

package clientimport ("fmt""net""os""strings""test/util"
)func StartTCPClient() {conn, err := net.Dial("tcp", "localhost:9830")if err != nil {util.HandleError(err)os.Exit(1)}defer conn.Close()// 发送200kb消息largeMessage := strings.Repeat("A", 200*1024)_, err = conn.Write([]byte(largeMessage))if err != nil {util.HandleError(err)os.Exit(1)}fmt.Println("Sent message to server!")
}

执行入口:

package mainimport ("fmt""sync"c "test/internal/client"s "test/internal/server"
)// main wireshark filter express: tcp.port==9830
func main() {var wg sync.WaitGroupwg.Add(2)serverReady := make(chan string, 1)go func() {s.StartTCPServer(serverReady)wg.Done()}()go func() {<-serverReadyc.StartTCPClient()wg.Done()}()wg.Wait()
}

编译执行,控制台输出如下:

Untitled

2.2. Wireshark抓包分析

由于我们这里TCP的客户端和服务端都是面向localhost ,使用adapter for loopback traffic capture接口捕获回环流量,过滤器过滤tcp端口9830即可:

tcp.port==9830

Untitled

需要注意,即使代码和我一样,最终抓包的数据依然会有差距,因为MTUwindow size等参数会因为OS的策略不同有差异,求同存异抓共性。

大体分为三部分:

  • 协议连接建立与确认:即包号92~96部分,图中具体又分为两部分:
    • 包号92~93中的Source和Destination都是::1,这个地址是IPV6的地址,类似于IPV4中的127.0.0.1。TCP客户端先尝试了连接IPV6的9830端口,被服务器中断(RST)。
    • 包号94~96尝试了尝试了IPV4的9803端口,这一次得到了服务器的正确回应,开始了**TCP协议中的“三次握手”,此时建立TCP连接**
  • 具体的业务数据交互:即包号97~103
  • 协议连接断开与确认:即包号104~107,也就是**TCP协议中的“四次挥手”,此时释放TCP连接**

点开包号96,我们查看其Network层的数据情况:

Untitled

Source Port之类的字段比较直观易于理解,下面我们重点看一下一些不太直观的字段代表的数据含义。

2.3. 限制数据包的大小——MSS与MTU

网络对包的大小是存在限制的,这部分是在建立TCP连接的“三次握手”中进行声明,即:

  • MSS(Maximum Segment Size,最大段大小)
  • MTU(Maximum Transmission Unit,最大传输单元):MSS+ TCP头长度 + IP头长度即是MTU

Untitled

在“三次握手中”,包号94中,客户端向服务端声明了MSS=65495 ,可以计算MTU单位为Byte,一般Wireshark中出现的数字单位都是Byte):

MTU = 65495 + 20(TCP头) + 20(IP头) = 65535

同理,包号95中,服务端在给客户端的ACK包中也声明了自己的MSS,也可以计算出MTU

客户端和服务端各自有MTU,实际的传输包的大小是由客户端与服务端2个MTU中较小的数值去决定的。

2.4. 保证TCP的有序传输——Seq,Len与Ack

TCP提供的是有序传输,每个数据段都要标上一个序号。

在实际场景中,TCP传输数据时并不能严格保证有序,总会出现乱序的情况,需要根据序号进行排序

  • Len:length,数据长度
  • Seq:Sequence Number,序号,即上一个数据段Seq + Len,发送方和接收方都需各自维护Seq状态
  • Ack:Acknowledge Number,确认号,待接受的数据序号,发送方和接收方都需各自维护Ack状态

以包号97~99为例:

Untitled

  • 97号:客户端发送数据,声明自己的Seq=1,Len=65495
  • 98号:服务端声明自己的Seq=1,Len=0,同时计算Ack=65496,即发送方的Seq + Len
  • 99号:客户端发送数据,声明自己的Seq=65496,Len=65495,ACK为1,即上一步中服务端的Seq + Len

可以推断出:

  • SeqLen主要表达的是作为发送方当前的数据序号和长度
  • Ack主要表达的是作为接收方的接收到的数据序号和长度的和
  • TCP通信中,一个客户端/服务端既有发送的场景,也有接受的场景,因此Seq,和Ack都各自需要单独维护,Len则是实际的数据长度。

2.5. TCP头标志位——URG,ACK,PSH,RST,SYN,FIN

TCP头包含一系列的标识位(也称作控制位或标志位),它们用于控制和管理TCP连接的不同方面。每个标识位都占用TCP头部中的1个比特。

Wireshark不仅帮我们“翻译”了当前封包的状态,也把TCP头的所有状态位都做了提示。

Untitled

  • URG(紧急):表示紧急指针字段(Urgent Pointer)有效,用于指示紧急数据。
  • ACK(确认):表示确认字段(Acknowledgment Field)有效。几乎所有的TCP报文,除了最初的SYN报文外,都会设置这个标志。
  • PSH(推送):提示接收端应该立即将这个报文交给应用层,而不是等待缓冲区满。
  • RST(重置):用于重置错误的连接,或拒绝非法的报文或打开的连接。
  • SYN(同步):在建立连接时用来同步序列号。当一个连接开始时,用来初始化序列号并开始连接建立。
  • FIN(结束):用于释放一个连接。当数据传输结束时,发送方用它来告诉接收方它已经结束发送数据。

2.6. TCP连接建立——三次握手

包号94~96行则为TCP的“三次握手”行为,发生在TCP连接建立之初:

Untitled

“三次握手”主要分为3步:

  1. 客户端 → 服务端:【SYN】申请建立连接,声明初始Seq
  2. 服务端 → 客户端:【SYN,ACK】收到连接请求,声明初始Seq,声明Ack=客户端声明的初始Seq + 1
  3. 客户端 → 服务端:【ACK】收到确认请求,声明Ack=服务端初始Seq + 1

2.7. TCP连接释放——四次挥手

包号104~107行则为TCP的“四次挥手”行为,发生在TCP连接需要中断,释放连接时:

Untitled

**“四次挥手”**主要分为4步,发起方可能是客户端,也可能是服务端:

  1. 发起方发起释放连接请求:【FIN,ACK】,声明SeqAck
  2. 接受方返回确认收到:【ACK】,声明Ack=第1.步中发起方的Seq + 1
  3. 接收方发起释放连接请求:【FIN,ACK】,声明SeqAck(与上一步一样)
  4. 发起方返回确认收到:【ACK】,声明Ack=第3.步中接收方的Seq + 1

2.8. 大包拆分——累计确认,TCP窗口

  • 我们TCP客户端代码中发送了一个200kb的字符串给服务端,之前分析过我们的MTU限制在65535b,不算TCP头和IP头的MSS为65495b。我们实际无法在一个数据帧中发送全部数据,需要按照MTU拆分为多个数据帧进行发送。
  • 多个数据帧的发送不一定每一条都需要等待接收方回复ACK,可以发送若干条数据帧之后,接收方回复一条ACK即可,这是TCP的累计确认。
  • TCP连接的一方连续发送的数据帧数是存在限制的,否则无限发送数据帧,另一方处理速率赶不上就会遇到Back Pressure(背压)的情况,这个限制则是TCP Window(TCP窗口),即Wireshark中的Win的数值:

Untitled

  1. 包号95是三次握手的第二次,win=65535,这是声明自己的接受窗口大小是65535,在我们的例子中是服务端声明自己的接受窗口大小是65535,这是协商的初始窗口大小。
  2. 客户端按照MTU/MSS要求拆分数据帧
  3. 包号97,客户端向服务端发送了Len=65495的数据
  4. 包号98,服务端向客户端发送ACK,调整了自己的TCP窗口,声明Win=2161152。这里如果窗口大小为零,发送方将停止发送数据,并等待下一个窗口更新。也就是说,窗口大小是动态调整的。
  5. 客户端获知服务端的窗口变大了,因此自己可以连续发送多个数据帧
  6. 包号99~101,客户端连续向服务端发送了3个数据帧,无需等待服务端回复ACKSeq按序增加,由于服务端没有回复ACK,这3帧数据的Ack都一样为1。
  7. 包号102,服务端向客户端发送了ACKAck=204801,刚好是包号101的Seq + len,这里实际上代表当前客户端已经收到了包号99~101的内容,这被称为TCP的累计确认。

窗口大小在TCP协议设计之初只留了2byte,这个可以在Wireshark中看到:

Untitled

后续为了提升Wireshark的长度,在TCP“三次握手”时的Options中有Window scale

Untitled

最终窗口大小计算公式 = Window的数值 8442 * 2的window scale次方

2.9. 动态调整TCP窗口——从慢启动到阻塞避免

在上一部分大包拆分中,可以看到TCP窗口是会动态调整的,这是有一个具体的调整策略的。

  1. 连接刚建立,发送方对网络情况一无所知,需要定一个初始值,可以是几个MSS大小。
  2. 连接初期,由于发生拥塞概率很低,如果发出去的包都得到确认,可以尝试增大阻塞窗口,RFC建议是每收到n个确认,阻塞窗口就增大n个MSS,这个过程需要慢慢增长,称为慢启动过程
  3. 持续一段时间后,窗口大小达到一个较大的值,发生拥塞的概率变大,不能继续使用慢启动的算法,需要再缓慢一点,RFC建议每个往返时间增加1个MSS,这个过程称为拥塞避免。

Untitled

2.10. 丢包问题——RTO与快速重传

TCP连接过程中有可能出现丢包的情况。

对于发送方来说,如果发出去的包不像往常一样得到确认,有可能是网络延迟导致,发送方会等待一段时间再去判断,如果一直收不到,就会判定包已丢失,进行重传。这个过程称为超时重传,从发出原始包刀重传该包的时间段称为RTO

Untitled

重传之后,TCP窗口也会被调整,会先降到1个MSS,之后会进入慢启动过程。不过这次从慢启动到拥塞的临界窗口值有了参考依据,RFC5681建议应该设置为拥塞时没被确认的数据量的1/2,不小于2个MSS

Untitled

RTO的过程对性能影响是比较大的:

  1. RTO阶段等待重传不能传数据,浪费处理时间
  2. RTO之后的TCP窗口急剧减小,传输比之前慢

与RTO不同,如果拥塞很轻微,发生部分丢包,发送方还是能接收到部分Ack包,Ack会有期望Seq号,通过这个期望Seq号,发送方会意识到发生包丢失,当发送方收到3个及以上Dup Ack(重复确认)时会立刻重传,这个过程称为快速重传

这里之所以需要凑齐3个及以上Dup Ack的原因是实际场景中包可能会乱序,Ack好像表现出一个缺失的包,但是这个包并没有丢失,而是由于乱序还在数据传输路上,可能很快就会传输过来,因此设置一个数量要求一定程度避免乱序导致快速重传

Untitled

快速重传的过程对性能影响是比较小的,因为依然有部分包能够被发送和接收到,说明拥塞并不严重,因此只需传慢一点即可,无需突然大幅度TCP窗口重新慢启动。RFC5681建议重新设置临时窗口为拥塞时没被确认数据的1/2,不小于2个MSS,拥塞窗口设置为临界窗口+3个MSS

Untitled

2.11. 减轻网络负担可能降低性能——延迟确认与Nagle算法

  • 延迟确认:如果收到一个包后暂时没什么数据要发给对方,那就延迟一段时间再确认;假设这段时间内恰好有数据要发出,则确认信息和数据可以在一个包里发。延迟确认减少了部分确认包,减轻了网络负担,但有时候会影响性能,带来传输数据延迟。
  • Nagle算法:在发出去的数据还没有被确认之前,如果有小数据生成,就把小数据收集起来凑满一个MSS或者等收到确认后再发送。

3. 参考资料

  • 林沛满 -《Wireshark网络分析就这么简单》
  • 刘超 ——《趣谈网络协议》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/658263.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cleanmymacX有必要买吗

CleanMyMac X是一款被广泛推荐的Mac电脑清理软件。以下是关于是否购买CleanMyMac X的几个关键点&#xff1a; 软件功能&#xff1a;CleanMyMac X具备多项功能&#xff0c;包括但不限于系统垃圾清理、缓存清理、恶意软件移除、隐私保护等。这些功能有助于保持Mac电脑的清洁和性能…

StarRocks -- 基础概念(数据模型及分区分桶)

1. 数据模型 StarRocks提供四种数据模型&#xff1a; Duplicate Key, Aggregate Key, Unique Key, Primary Key 1.1 Duplicate Key 适用场景&#xff1a; 分析原始数据&#xff0c;如原始日志和原始操作记录。可以使用多种方法查询数据&#xff0c;不受预聚合方法的限制。加…

第七篇:node中间件详解

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! ​ 目录 &#x1f4d8; 引言&#xff1a; &#…

【Opcua】 客户端读写时,Opcua Server信息返回处追溯(1)

【Opcua】 客户端读写时&#xff0c;Opcua Server信息返回处追溯&#xff08;1&#xff09; 前言从客户端角度展开分析从服务端角度展开分析 前言 基于前文【Node-RED】node-red-contrib-opcua-server模块使用&#xff08;2&#xff09;介绍&#xff0c;我们已经了解到NodeRed…

【EI会议征稿通知】第四届信号图像处理与通信国际学术会议(ICSIPC 2024)

第四届信号图像处理与通信国际学术会议&#xff08;ICSIPC 2024&#xff09; 2024 4th International Conference on Signal Image Processing and Communication 第四届信号图像处理与通信国际学术会议&#xff08;ICSIPC2024&#xff09;将于2024年5月17日-19日在陕西西安再…

用友NC Cloud及YonBIP PMCloudDriveProjectStateServlet JNDI注入漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

【伪类·HTML】

伪类 在 CSS 中&#xff0c;伪类是添加到选择器的关键字&#xff0c;给指定元素设置一些特殊状态&#xff0c;以 : 开头。 链接有以下四个状态。这四种状态也称之为超链接的伪类。 对于超链接的伪类&#xff0c;推荐的使用顺序是&#xff1a; :link - :visited - :hover - :a…

代码随想录刷题笔记-Day15

1. 完全二叉树的的节点个数 222. 完全二叉树的节点个数https://leetcode.cn/problems/count-complete-tree-nodes/ 给你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。 完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没…

幻兽帕鲁服务器多少钱?幻兽帕鲁服务器价格,2月最新

2024年幻兽帕鲁服务器价格表更新&#xff0c;阿里云、腾讯云和华为云Palworld服务器报价大全&#xff0c;4核16G幻兽帕鲁专用服务器阿里云26元、腾讯云32元、华为云26元&#xff0c;阿腾云atengyun.com分享幻兽帕鲁服务器优惠价格表&#xff0c;多配置报价&#xff1a; 幻兽帕鲁…

Spring Boot 中使用 Spring MVC基础

Spring MVC基础 一、控制器 controller1.定制控制器的方法&#xff08;1&#xff09;接收请求&#xff08;2&#xff09;接收请求参数&#xff08;3&#xff09;返回值 二、模型 Modle三、视图 View四、总结 Spring MVC 是非常著名的 Web 应用框架&#xff0c;现在的大多数 Web…

【C++】类和对象之构造函数、析构函数、拷贝构造函数(二)

前言&#xff1a;在上一篇我们对于C中类和对象有了一个初步的了解&#xff0c;今天我们将进一步的学习&#xff0c;今天我们目标是对构造函数、析构函数、拷贝构造函数进行一个初步学习在后面也会进一步的学习&#xff0c;一起加油呐&#xff01; &#x1f496; 博主CSDN主页:卫…

幻兽帕鲁服务器多少钱——幻兽帕鲁服务器价格介绍

2024年幻兽帕鲁服务器价格表更新&#xff0c;阿里云、腾讯云和华为云Palworld服务器报价大全&#xff0c;4核16G幻兽帕鲁专用服务器阿里云26元、腾讯云32元、华为云26元&#xff0c;阿腾云atengyun.com分享幻兽帕鲁服务器优惠价格表&#xff0c;多配置报价&#xff1a; 幻兽帕鲁…

Windows Service 2008虚拟机安装mysql service 5.7并实现远程连接

安装前必读 mysql好像在5.7.20版本之后的绿色压缩包版解压都没有my.ini或者my-default.ini配置文件了&#xff0c;需要自己添加配置。 也没有data数据库文件夹&#xff0c;data文件夹不能自己新建&#xff0c;需要命令initialize初始化建立。 my-default.ini文件存不存在不重要…

JavaWeb学习|Session

学习材料声明 所有知识点都来自互联网&#xff0c;进行总结和梳理&#xff0c;侵权必删。 引用来源&#xff1a;尚硅谷最新版JavaWeb全套教程,java web零基础入门完整版 Session 1、Session 就一个接口&#xff08;HttpSession&#xff09;。 2、Session 就是会话。它是用来…

[ESP32]在Thonny IDE中,如何將MicroPython firmware燒錄到ESP32開發板中?

[ESP32 I MicroPython] Flash Firmware by Thonny(4.1.4) IDE 正常安裝流程&#xff0c;可參考上述影片。然而&#xff0c;本篇文章主要是紀錄安裝過程遇到的bug, 供未來查詢用&#xff0c;也一併供有需要的同好參考。 問題:安裝後&#xff0c;Thonny互動介面顯示一堆亂碼和co…

【lesson26】学习MySQL事务前的基础知识

文章目录 CURD不加控制&#xff0c;会有什么问题&#xff1f;CURD满足什么属性&#xff0c;能解决上述问题&#xff1f;什么是事务&#xff1f;为什么会出现事务事务的版本支持 CURD不加控制&#xff0c;会有什么问题&#xff1f; CURD满足什么属性&#xff0c;能解决上述问题&…

文本生成高清、连贯视频,谷歌推出时空扩散模型

谷歌研究人员推出了创新性文本生成视频模型——Lumiere。 与传统模型不同的是&#xff0c;Lumiere采用了一种时空扩散&#xff08;Space-time&#xff09;U-Net架构&#xff0c;可以在单次推理中生成整个视频的所有时间段&#xff0c;能明显增强生成视频的动作连贯性&#xff…

挑选合适的板式家具生产线:满足加工需求的要素解析

板式家具生产线是现代家具制造业中不可或缺的重要工具。然而&#xff0c;选择一条适合自身加工需求的板式家具生产线并不容易&#xff0c;需要考虑多方面因素。本文将深入探讨如何挑选合适的板式家具生产线&#xff0c;从而让读者更好地理解生产线的特点和选择要点。 一、需求分…

nginx+nginx-rtmp-module+ffmpeg进行局域网推流rtmp\m3u8

局域网推流的简单方式 这里以ubuntu为例 一、先下载安装包 nginx、nginx-rtmp-module&#xff0c;再一起安装 # 下载nginx # 这里我安装的是 nginx-1.10.3 版本 cd /usr/software wget http://nginx.org/download/nginx-1.25.0.tar.gz tar -zxvf nginx-1.25.0.tar.gz# 下载ng…

Prometheus---图形化界面grafana(二进制)

前言 Prometheus是一个开源的监控以及报警系统。整合zabbix的功能&#xff0c;系统&#xff0c;网络&#xff0c;设备。 proetheus可以兼容网络&#xff0c;设备。容器的监控。告警系统。因为他和k8s是一个项目基金开发的产品&#xff0c;天生匹配k8s的原生系统。容器化和云原…