TensorFlow2实战-系列教程4:数据增强:keras工具包/Data Augmentation

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

对于图像数据,将其进行翻转、放缩、平移、旋转操作就可以得到一组新的数据:
在这里插入图片描述

1、展示输入输出

import matplotlib.pyplot as plt
from PIL import Image
%matplotlib inline
from keras.preprocessing import image
import keras.backend as K
import os
import glob
import numpy as np
def print_result(path):name_list = glob.glob(path)fig = plt.figure(figsize=(12,16))for i in range(3):img = Image.open(name_list[i])sub_img = fig.add_subplot(131+i)sub_img.imshow(img)
img_path = './img/superman/*'
in_path = './img/'
out_path = './output/'
name_list = glob.glob(img_path)
print(name_list)
print_result(img_path)
  1. img_path 就是存放3张图像数据的路径,in_path 、out_path 暂时没用到
  2. name_list 查看一下三张数据的路径字符信息
  3. print_result就是一个专门用来打印3张图像的函数

打印结果:

[‘./img/superman\00000008.jpg’,
‘./img/superman\00000009.jpg’,
‘./img/superman\00000010.jpg’]

在这里插入图片描述

2、调整图像大小

datagen = image.ImageDataGenerator()
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False,  save_to_dir=out_path+'resize',save_prefix='gen', target_size=(224, 224))
  1. 创建一个数据增强的实例
  2. 指定参数加载图像数据
  3. save_to_dir=out_path+‘resize’,用到了前面的输出路径
  4. 指定了target_size参数后图像都会被重置成这个尺寸
for i in range(3):gen_data.next()
print_result(out_path+'resize/*')

从数据生成器中获取数据,将图像打印出来
打印结果:
在这里插入图片描述

3、旋转图像

datagen = image.ImageDataGenerator(rotation_range=45)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rotation_range',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'rotation_range/*')
  1. 创建一个旋转的数据增强实例,
  2. 创建一个数据增强实例,实际上就是直接加载数据
  3. 将加载的图像数据重置尺寸
  4. 将重置尺寸的图像转换成ndarray格式
  5. 将旋转数据增强应用到重置尺寸的图像数据中
  6. 使用数据增强生成器重新从目录加载数据
  7. 保存加载的数据
  8. 使用for循环:
  9. 生成并处理三个图像,由于设置了 save_to_dir,这些图像将被保存。
  10. 打印三个图像

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

4、平移变换

datagen = image.ImageDataGenerator(width_shift_range=0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'shift/*')

与3中不同的是,这段代码是进行平移变换进行数据增强,指定了平移变换的参数,width_shift_range=0.3,height_shift_range=0.3,这两个参数分别表示会在水平方向和垂直方向±30%的范围内随机移动

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

datagen = image.ImageDataGenerator(width_shift_range=-0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift2',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'shift2/*')

由于是随机的,这两段代码完全一样,但是结果却不同
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

5、缩放

datagen = image.ImageDataGenerator(zoom_range=0.5)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'zoom',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'zoom/*')

这段代码与3中不同的就是,这里指定缩放参数来进行缩放数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

6、channel_shift

datagen = image.ImageDataGenerator(channel_shift_range=15)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'channel',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'channel/*')

这段代码与3中不同的就是,这里指定通道偏移参数来进行通道偏移数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

7、水平翻转

datagen = image.ImageDataGenerator(horizontal_flip=True)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'horizontal',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'horizontal/*')

这段代码与3中不同的就是,这里指定水平翻转参数来进行水平翻转数据增强
在这里插入图片描述

8、rescale重新缩放

datagen = image.ImageDataGenerator(rescale= 1/255)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rescale',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'rescale/*')

这段代码与3中不同的就是,这里指定rescale重新缩放参数来进行rescale重新缩放数据增强
通常用于归一化图像数据。将图像像素值从 [0, 255] 缩放到 [0, 1] 范围,有助于模型的训练
在这里插入图片描述

9、填充方法

  • ‘constant’: kkkkkkkk|abcd|kkkkkkkk (cval=k)
  • ‘nearest’: aaaaaaaa|abcd|dddddddd
  • ‘reflect’: abcddcba|abcd|dcbaabcd
  • ‘wrap’: abcdabcd|abcd|abcdabcd
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'fill_mode',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'fill_mode/*')
  • fill_mode='wrap':当应用几何变换后,图像中可能会出现一些新的空白区域。fill_mode 定义了如何填充这些空白区域。在这种情况下,使用 'wrap' 模式,意味着空白区域将用图像边缘的像素“包裹”填充。
  • zoom_range=[4, 4]:这设置了图像缩放的范围。在这里,它被设置为在 4 倍范围内进行随机缩放。由于最小和最大缩放因子相同,这将导致所有图像都被放大 4 倍

用原图像填充,任何超出原始图像边界的区域将被图像的对边界像素填充
在这里插入图片描述

datagen = image.ImageDataGenerator(fill_mode='nearest', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'nearest',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'nearest/*')

使用最近点填充,每个空白区域的像素将取其最近的非空白区域的像素值
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/653525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式ID(3):雪花算法生成ID之UidGenerator(百度开源的分布式唯一ID生成器)

1 UidGenerator官方地址 UidGenerator源码地址: https://github.com/baidu/uid-generator UidGenerator官方说明文档地址: https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md 这边只做简单介绍,详细说明请看官方说明文档。 2 Snowflake算法 Snowfl…

spring boot学习第八篇:操作elastic search的索引和索引中的数据

前提参考&#xff1a;elastic search入门-CSDN博客 前提说明&#xff1a;已经安装好了elastic search 7.x版本&#xff0c;我的es版本是7.11.1 1、 pom.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns&q…

空间计算时代催生新一波巨大算力市场需求

什么是空间计算&#xff1f; 空间计算是一种整合虚拟现实&#xff08;VR&#xff09;、增强现实&#xff08;AR&#xff09;、混合现实&#xff08;MR&#xff09;等技术的计算模式&#xff0c;旨在将数字信息与真实世界融合在一起。这种融合创造了一个全新的计算环境&#xff…

【极数系列】docker环境搭建Flink1.18版本(04)

文章目录 引言01 Linux安装Docker1.安装yum-utils软件包2.安装docker3.启动docker4.设置docker自启动5.配置Docker使用systemd作为默认Cgroup驱动6.重启docker 02 docker部署Flink1.18版本1.拉取最新镜像2.检查镜像3.编写dockerFile文件4.执行dockerFile5.检查flink是否启动成功…

一个SSE(流式)接口引发的问题

前言 最近我们公司也是在做认知助手&#xff0c;大模型相关的功能&#xff0c;正在做提示词&#xff0c;机器人对话相关功能。想要提高用户体验&#xff0c;使用SSE请求模式&#xff0c;在不等数据完全拿到的情况下边拿边返回。 之前做过一版&#xff0c;但不是流式返回&…

机房环境动力监控系统:S275远程控制网关助力高效管理

现场问题 1、机房安全隐患 机房存在意外断电、温湿度过高过低、漏水断路等隐患&#xff0c;传统监测手段难以提前发现和预警。 2、机房远程运维困难 因环境改变、非授权活动、设备状态变化等引起的事故&#xff0c;难以满足机房远程运维的可靠管控要求。 3、机房改造成本高…

Django 实现SS

1、简单的sse只要用django内置的StreamingHttpResponse就可以实现 2、django-sse这个第三方库已经有10年没有更新&#xff0c;不要用这个库了。 3、告知前端关闭SSE连接需要发送yield "event: close\ndata: \n\n" 而不能只发送yield "event: close\n" …

菱形打印和十进制ip转二进制

1.菱形打印 用for循环 #!/bin/bashread -p "请输入菱形的大小&#xff1a;" num #打印向上的等腰三角形 for ((i1;i<num;i)) dofor ((jnum-1;j>i;j--))doecho -n " " #打印的是前面的空格donefor ((k1;k<2*i-1;k))doecho -n "*" #打印…

OneNote中的键盘快捷记录(超全)

本文列出了桌面 WindowsOneNote 的键盘快捷方式。 常用快捷方式 执行的操作 按 打开新的 OneNote 窗口。 CtrlM 创建 快速笔记。 CtrlShiftM 或 AltWindows 徽标键N 停靠 OneNote 窗口。 CtrlAltD 撤消前一个操作。 CtrlZ 如果可能&#xff0c;请重做上一个操作。 …

HCIE之BGP正则表达式(四)

BGP 一、AS-Path正则表达式数字| 等同于或的关系[]和.$ 一个字符串的结束_代表任意^一个字符串的开始()括号包围的是一个组合\ 转义字符* 零个或多个&#xff1f;零个或一个一个或多个 二、BGP对等体组三、BGP安全性 一、AS-Path正则表达式 正则表达式是按照一定模版匹配字符串…

《思考的快与慢》部分整理

认知心理学机位大洞见&#xff1a;人类大脑的默认模式是系统1&#xff0c;而不是系统2&#xff0c;人类大脑遵循“能不用脑&#xff0c;就不用脑”的原则。 系统1&#xff08;快系统&#xff09;对应着我们常说的直觉思维 系统2&#xff08;慢系统&#xff09;对应着理性思维…

Linux实验记录:使用RAID(独立冗余磁盘阵列)

前言&#xff1a; 本文是一篇关于Linux系统初学者的实验记录。 参考书籍&#xff1a;《Linux就该这么学》 实验环境&#xff1a; VmwareWorkStation 17——虚拟机软件 RedHatEnterpriseLinux[RHEL]8——红帽操作系统 目录 前言&#xff1a; 备注&#xff1a; 部署磁盘阵…

Vue路由

1. 路由的基本概念 1.1. 什么是路由&#xff1f; 路由的概念 路由的本质就是一种对应关系&#xff0c;比如说我们在url地址中输入我们要访问的url地址之后&#xff0c;浏览器要去请求这个url地址对应的资源。 那么url地址和真实的资源之间就有一种对应的关系&#xff0c;就是…

成功解决IndexError: index 0 is out of bounds for axis 1 with size 0.

成功解决IndexError: index 0 is out of bounds for axis 1 with size 0. &#x1f335;文章目录&#x1f335; &#x1f333;引言&#x1f333;&#x1f333;报错分析及解决方案&#x1f333;&#x1f333;参考文章&#x1f333;&#x1f333;结尾&#x1f333; &#x1f333;…

Cesium.js实现显示点位对应的自定义信息弹窗(数据面板)

零、相关技术选型&#xff1a; Vue2 Vuecli5 Cesium.js 天地图 一、需求说明 在使用2D地图&#xff08;天地图、高德地图等&#xff09;基于官方文档可以实现下面需求&#xff1a; 实现添加点位&#xff0c;并在点位附近显示对应的信息弹窗。 一般信息弹窗的显示方式有两种&am…

【数据结构1-2】二叉树

树形结构不仅能表示数据间的指向关系&#xff0c;还能表示出数据的层次关系&#xff0c;而有很明显的递归性质。因此&#xff0c;我们可以利用树的性质解决更多种类的问题。 但是在平常的使用中&#xff0c;我们并不需要使用这么复杂的结构&#xff0c;只需要建立一个包含int r…

分享一个POI封装的Excel解析工具

前言: 本来我已经很久没做java的项目了&#xff0c;最近手头的项目没啥事又被拉过去搞java了&#xff0c;但是看到这帮人写的代码&#xff0c;心凉了一截&#xff0c;写一个Excel的导入写的 都有很多问题&#xff0c; 写个示范吧&#xff1a; ExcelUtil util new ExcelUtil()&…

【极数系列】Flink配置参数如何获取?(06)

文章目录 gitee码云地址简介概述01 配置值来自.properties文件1.通过路径读取2.通过文件流读取3.通过IO流读取 02 配置值来自命令行03 配置来自系统属性04 注册以及使用全局变量05 Flink获取参数值Demo1.项目结构2.pom.xml文件如下3.配置文件4.项目主类5.运行查看相关日志 gite…

sqli-labs第一关

1.判断是否存在注入&#xff0c;注入是字符型还是数字型? ?id1 and 11 ?id1 and 12 因为输入and 11与and 12 回显正常&#xff0c;所以该地方不是数字型。 ?id1 ?id1-- 输入单引号后报错&#xff0c;在单引号后添加--恢复正常&#xff0c;说明存在字符注入 2.猜解SQL查…

【物联网】物联网技术的起源、发展、重点技术、应用场景与未来演进

物联网技术的起源、发展、重点技术、应用场景与未来演进 物联网&#xff08;IoT, Internet of Things&#xff09;是近年来科技领域中的热门话题&#xff0c;它将物理世界的各种“事物”与互联网连接起来&#xff0c;从而实现了数据的交换和通信。物联网技术的起源可追溯到20世…