时序预测 | MATLAB实现ICEEMDAN-SSA-GRU、ICEEMDAN-GRU、SSA-GRU、GRU时间序列预测对比

时序预测 | MATLAB实现ICEEMDAN-SSA-GRU、ICEEMDAN-GRU、SSA-GRU、GRU时间序列预测对比

目录

    • 时序预测 | MATLAB实现ICEEMDAN-SSA-GRU、ICEEMDAN-GRU、SSA-GRU、GRU时间序列预测对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

基本介绍

时序预测 | MATLAB实现ICEEMDAN-SSA-GRU、ICEEMDAN-GRU、SSA-GRU、GRU时间序列预测对比

模型描述

ICEEMDAN-SSA-GRU和ICEEMDAN-GRU利用了分解技术将时间序列分解为不同的成分,然后使用GRU模型进行预测,这有助于捕捉序列中的局部模式和长期依赖关系。

程序设计

  • 完整程序和数据下载方式:私信博主回复MATLAB实现ICEEMDAN-SSA-GRU、ICEEMDAN-GRU、SSA-GRU、GRU时间序列预测对比
%% 采用ssa优化
[x ,fit_gen,process]=ssaforlstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
%初始化种群
for i = 1 : popfor j=1:dimif j==1%除了学习率 其他的都是整数x( i, j ) = (ub(j)-lb(j))*rand+lb(j);elsex( i, j ) = round((ub(j)-lb(j))*rand+lb(j));endendfit( i )=fitness(x(i,:),P_train,T_train,P_test,T_test);
end
pFit = fit;
pX = x;
fMin=fit(1);
bestX = x( i, : );for t = 1 : M[ ~, sortIndex ] = sort( pFit );% Sort.从小到大[fmax,B]=max( pFit );worse= x(B,:);r2=rand(1);%%%%%%%%%%%%%5%%%%%%这一部位为发现者(探索者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%if(r2<0.8)%预警值较小,说明没有捕食者出现for i = 1 : pNum  %r2小于0.8的发现者的改变(1-20% Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endelse   %预警值较大,说明有捕食者出现威胁到了种群的安全,需要去其它地方觅食for i = 1 : pNum   %r2大于0.8的发现者的改变x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endend[ ~, bestII ] = min( fit );bestXX = x( bestII, : );%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop     %剩下20-100的个体的变换                % Equation (4)%         i%         sortIndex( i )A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1,dim).*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);endx( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%判断边界是否超出fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)b=sortIndex(c(1:pop));for j =  1  : length(b)      % Equation (5)if( pFit( sortIndex( b(j) ) )>(fMin) ) %处于种群外围的麻雀的位置改变x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else%处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit(  sortIndex( b(j)  ) )=fitness(x(sortIndex( b(j) ),:),P_train,T_train,P_test,T_test);end

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/652636.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解密人工智能:探索机器学习奥秘

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;网络奇遇记、数据结构 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 机器学习的定义二. 机器学习的发展历程三. 机器学习的原理四. 机器学习的分类…

ElevationStation:一款专为红队设计的权限提升测试工具

关于ElevationStation ElevationStation是一款专为红队设计的权限提升测试工具&#xff0c;在该工具的帮助下&#xff0c;广大红队研究人员和渗透测试人员可以轻松实现SYSTEM权限令牌的获取&#xff0c;并通过将目标账号提升至SYSTEM权限来测试目标操作系统的安全态势。 Elev…

【Spark系列3】RDD源码解析实战

本文主要讲 1、什么是RDD 2、RDD是如何从数据中构建 一、什么是RDD&#xff1f; RDD&#xff1a;弹性分布式数据集&#xff0c;Resillient Distributed Dataset的缩写。 个人理解&#xff1a;RDD是一个容错的、并行的数据结构&#xff0c;可以让用户显式的将数据存储到磁盘…

前端——CSS

目录 文章目录 前言 一.CSS简介 1.CSS选择器 2.CSS选择器语法 3.CSS样式引入 4.CSS 高级选择器 二.CSS样式 1.字体 ​编辑 2.文本 3. 背景 4.边框 5.边距 6.浮动 7.清除浮动 8.定位 9. 列表样式 10.伪类样式 三.盒子模型 四.CSS3新特性 1.边框 2.盒子阴影 …

12.从项目经理的生存哲学到适配器模式(Adapter Pattern)

如果这个世界没有了项目经理&#xff0c;事情的发展可能并不会如同想象中一样美好&#xff0c;相反&#xff0c;对于开发人员来说可能是噩梦的开始。 比如&#xff1a; 客户因为几个需求的具体实现大发雷霆&#xff0c;甚至开始恶语相向&#xff0c;一通含ma量极高的“斯伯坦语…

自然语言处理:transfomer架构

介绍 transfomer是自然语言处理中的一个重要神经网络结构&#xff0c;算是在传统RNN和LSTM上的一个升级&#xff0c;接下来让我们来看看它有处理语言序列上有哪些特殊之处 模型整体架构 原论文中模型的整体架构如下&#xff0c;接下来我们将层层解析各层的作用和代码实现 该…

3d模型怎么分辨材质?--模大狮模型网

在3D模型中&#xff0c;通常可以通过以下几种方式来分辨材质&#xff1a; 视觉检查&#xff1a;在3D渲染视图或预览窗口中&#xff0c;您可以直接观察模型的外观来区分不同的材质。不同的材质可能具有不同的颜色、纹理、反射率等特征&#xff0c;因此通过直观的视觉检查&#x…

LV老板重夺全球首富 再次超过马斯克;新东方安徽总部大厦启用;中国与泰国签署互免签证协定

今日精选 • LV老板重夺全球首富 再次超过马斯克• 新东方安徽总部大厦启用• 中国与泰国签署互免签证协定 投融资与企业动态 • ​​传Temu将于3月在美国上线半托管业务• 国内数字支付解决方案提供商 “连连数字” 估值150亿&#xff0c;即将IPO• 滴滴与宁德时代宣布成立…

深度强化学习(王树森)笔记05

深度强化学习&#xff08;DRL&#xff09; 本文是学习笔记&#xff0c;如有侵权&#xff0c;请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接&#xff1a;https://github.com/wangshusen/DRL 源代码链接&#xff1a;https://github.c…

安全防御{第三次作业(在第二次作业上添加点需求)}

目录 需求&#xff1a; 拓扑图&#xff1a; 注意&#xff1a;先打开防火墙web界面&#xff0c;在此不做演示 1.要求一&#xff1a;&#xff0c;生产区在工作时间内可以访问服务器区&#xff0c;仅可以访问http服务器 2.要求二&#xff1a;办公区全天可以访问服务器区&#…

BGP:03 BGP路由

这是实验拓扑&#xff0c;IBGP 利用环回口建立邻居&#xff0c;IGP 协议为 OSPF&#xff0c; EBGP 通过物理接口建立邻居 基本配置&#xff1a; R1: sys sysname R1 int loop 0 ip add 1.1.1.1 24 int g0/0/0 ip add 192.168.12.1 24 qR2: sys sysname R2 int loop 0 ip ad…

JCEF学习

JCEF重要概念 CEF CEF&#xff0c;全称Chromium Embedded Framework &#xff0c;它是基于Google Chromium的开源项目&#xff0c;它的目标是能够向第三方程序添加WEB浏览器功能&#xff0c;以及可以使用HTML、CSS和JS渲染界面。 CEF框架是由Marshall Greenblatt 在 2008 年创…

第17节-高质量简历写作求职通关-投递反馈

&#xff08;点击即可收听&#xff09; 投递跟进和感谢信 如果对一家公司特别心仪&#xff0c;但是投递简历后一直得不到回复怎么办&#xff1f; 面试之后觉得自己没有表现好怎么办&#xff1f; 面试完几天了&#xff0c;依然没有得到回应怎么办&#xff1f; 这个时候你需要写一…

八种Flink任务告警方式

目录 一、Flink应用分析 1.1 Flink任务生命周期 1.2 Flink应用告警视角分析 二、监控告警方案说明 2.1 监控消息队中间件消费者偏移量 2.2 通过调度系统监控Flink任务运行状态 2.3 引入开源服务的SDK工具实现 2.4 调用FlinkRestApi实现任务监控告警 2.5 定时去查询目标…

无人机在三维空间中的转动问题

前提 这篇博客是对最近一个有关无人机拍摄图像项目中所学到的新知识的一个总结&#xff0c;比较杂乱&#xff0c;没有固定的写作顺序。 无人机坐标系旋转问题 上图是无人机坐标系&#xff0c;绕x轴是翻滚(Roll)&#xff0c;绕y轴是俯仰(Pitch)&#xff0c;绕z轴是偏航(Yaw)。…

力扣日记1.27-【回溯算法篇】131. 分割回文串

力扣日记&#xff1a;【回溯算法篇】131. 分割回文串 日期&#xff1a;2023.1.27 参考&#xff1a;代码随想录、力扣 131. 分割回文串 题目描述 难度&#xff1a;中等 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是 回文串 。返回 s 所有可…

D. Epic Transformation(堆+贪心)

思路&#xff1a;我们删的策略是从次数多的数开始删&#xff0c;每次取两种不同的数&#xff0c;每种删去一个&#xff0c;然后放回堆中。 代码&#xff1a; void solve(){int n;cin >> n;map<int,int>mp;for(int i 1;i < n;i ){int x;cin >> x;mp[x] …

Java笔记 --- 四、异常

四、异常 Java.lang.Throwable Error Exception&#xff08;异常&#xff09; 异常的作用 异常的处理方式 JVM默认的处理方式 捕获异常&#xff08;自己处理&#xff09; try里面没有出现异常&#xff0c;就不会运行catch里面的代码 如果出现多个异常&#xff0c;需要多个c…

【归并排序】【图论】【动态规划】【 深度游戏搜索】1569将子数组重新排序得到同一个二叉搜索树的方案数

本文涉及知识点 动态规划汇总 图论 深度游戏搜索 归并排序 组合 LeetCoce1569将子数组重新排序得到同一个二叉搜索树的方案数 给你一个数组 nums 表示 1 到 n 的一个排列。我们按照元素在 nums 中的顺序依次插入一个初始为空的二叉搜索树&#xff08;BST&#xff09;。请你统…

精选6款前端动画特效分享(附在线演示)

分享6款好玩的前端动画特效 其中有CSS动画、canvas动画、js小游戏等等 下方效果图可能不是特别的生动 那么你可以点击在线预览进行查看相应的动画特效 同时也是可以下载该资源的 CSS日食与太阳碰撞动画 一款基于CSS实现的日食动画特效 碰撞物体会从右侧旋转向太阳靠近重合而后…