【文本到上下文 #9】NLP中的BERT和迁移学习

一、说明

   ​BERT:适合所有人的架构概述:我们将分解 BERT 的核心组件,解释该模型如何改变机器理解人类语言的方式,以及为什么它比以前的模型有重大进步。
   ​BERT的变体: 在BERT取得成功之后,已经开发了几种适应措施来满足特定需求或解决某些限制。我们将探讨这些变体,例如 RoBERTa、DistilBERT、ALBERT 和 MobileBERT,重点介绍它们的独特功能和应用。
   ​迁移学习在NLP中的作用:深入研究迁移学习如何彻底改变 NLP,特别是在增强 BERT 等模型的功能方面。我们将讨论它的效率、适应性以及 Hugging Face 等平台在使高级 NLP 更易于访问方面的影响。
   ​针对特定任务微调 BERT:了解为各种 NLP 任务微调 BERT 的关键过程。我们将指导您选择正确的 BERT 模型、准备数据集、调整模型架构以及根据特定数据训练模型以获得最佳结果。
   ​动手示例:使用 BERT 进行情绪分析: 为了巩固您的理解,我们将提供一个代码片段,说明如何针对特定的 NLP 任务(例如情感分析)微调 BERT。

二、BERT:适合所有人的架构概述

  1. 双向情境分析
       ​它的作用:想象一下,通过一次查看所有单词而不是逐字逐句地阅读一个句子。这就是 BERT 所做的。它一起检查整个单词序列。
    为什么它很重要:通过分析周围所有单词(之前和之后)的上下文中的单词,BERT可以更全面、更准确地理解它们的含义。
  2. 蒙版语言模型(MLM)
       ​它是如何工作的:在训练过程中,BERT玩一种猜谜游戏。它隐藏(掩盖)句子中的一些单词,并尝试仅根据它们周围的其他单词正确猜测它们。
    区别:与猜测一行中下一个单词(如完成一个句子)的旧模型不同,BERT侧重于填充句子中的空白。
  3. 下一句话预测 (NSP)
       ​任务: BERT 还学会了成为一名侦探,弄清楚两个句子是否应该在逻辑上相互跟随。
       ​应用:这对于理解对话或文本的流程特别有用,例如确定问题后面的答案是否有意义。
  4. 神奇的内核:变压器编码器
    BERT的大脑由一种叫做“变压器编码器”的东西组成。让我们分解一下这些是什么:
  •    ​功能: 当BERT查看一个单词时,这一层可以帮助它同时考虑句子中其他单词的含义。这就像进行对话一样,你要注意整个讨论的背景,而不仅仅是说的最后一句话。
    例:在“银行已关闭”这句话中,BERT使用周围的词语来弄清楚“银行”是指河岸还是金融机构。

  •    ​角色:在考虑了周围的单词后,BERT使用这个网络进一步处理这些信息,完善其对每个单词的理解。
       ​会发生什么:这就像再看一遍句子,确保对每个单词的理解尽可能准确。

  •    ​BERT-base 与 BERT-large:BERT 有不同的尺寸。“基本”模型有 12 层这些编码器,而“大”模型则翻了一番,有 24 层。
    堆垛效果:每一层编码器都增加了BERT的理解深度,使其更加细致入微。更多的层意味着BERT可以理解更复杂的语言模式。

三、​BERT的变体

   在 BERT 取得成功之后,出现了几种适应措施,每种调整措施都针对特定需求或解决某些限制而量身定制:

   RoBERTa(鲁棒优化的 BERT 预训练方法):由 Facebook AI 开发,RoBERTa 修改了 BERT 的预训练程序,包括更长时间地训练模型、使用更多数据和更大的批量。
   ​DistilBERT:此版本旨在减小 BERT 的大小,同时保留其大部分性能,使其部署效率更高。
   ALBERT(A Lite BERT):它引入了参数缩减技术来扩展 BERT 并提高训练速度,使其内存效率更高。
   MobileBERT:针对移动设备优化的 BERT 的紧凑版本,专注于速度和尺寸效率。

3.1 迁移学习在NLP中的作用

   迁移学习彻底改变了自然语言处理 (NLP) 领域,特别是在增强 BERT 等模型的能力方面。这种方法涉及采用在大型且多样化的数据集上预先训练的模型,然后针对特定任务对其进行微调。理解这个概念及其影响,尤其是在 NLP 领域的一个著名平台 Hugging Face 的背景下,至关重要。

   理解迁移学习:从本质上讲,NLP 中的迁移学习就像为模型提供一般语言理解的综合课程,然后针对特定任务进行专门培训。它从像 BERT 这样的模型开始,该模型经过大量文本的训练,为其提供了对语言的基础掌握。然后对模型进行微调,这意味着它会在与特定任务相关的更集中的数据集上接受额外的训练,例如分析法律文件或评估客户情绪。

   效率和适应性:迁移学习的最大好处之一是它的效率。从头开始训练模型来理解语言是一项资源密集型工作。通过利用预先训练的模型,大部分基础训练已经就位。此外,迁移学习允许像 BERT 这样的通用模型适应各种专门任务,从而在不同的 NLP 领域得到广泛的应用。

   抱脸部在迁移学习中的作用:拥抱脸部在使迁移学习更容易实现方面发挥了重要作用。他们的平台为开发人员和研究人员提供了多种预训练模型,包括 BERT 的变体。此外,Hugging Face 还提供了工具和资源,可以简化针对特定任务微调这些模型的过程。这大大降低了高级 NLP 应用的进入门槛。

   对 NLP 开发的影响:Hugging Face 等平台的可用性使较小的团队和组织能够在没有大量资源的情况下利用最先进的模型。这种民主化导致 NLP 领域的创新和实验不断增加。此外,微调使模型能够更加熟练地完成特定任务,从而增强其在实际应用中的性能和实用性。

   总之,迁移学习,尤其是与 Hugging Face 等平台结合使用时,对 NLP 产生了变革性的影响。它简化了复杂语言模型的开发,实现了针对特定任务的定制,并为更广泛的用户参与高级 NLP 项目提供了机会。先进建模技术和可访问平台之间的协同作用正在推动 NLP 向前发展,使其成为人工智能研究和应用中最具活力和令人兴奋的领域之一

3.2 针对特定任务微调 BERT

   针对特定任务微调 BERT 是使这种强大的语言模型适应各种 NLP 应用程序的关键步骤。这个过程涉及几个关键阶段,每个阶段都是为了确保BERT有效地解决特定任务的细微差别而量身定制的。以下是这些阶段的更清晰细分:

   目的:第一步是选择与您的特定任务相符的适当 BERT 版本。
   注意事项:此选择取决于任务的大小和复杂性、可用的计算资源以及任务是否从速度或准确性中获益更多等因素。例如,对于移动应用程序,人们可能会选择MobileBERT来提高效率,而对于深度语言理解任务,BERT-large或RoBERTa可能更合适。

   定制:用于微调的数据集应紧密表示模型在实际任务中将遇到的数据类型。这意味着它应该包括风格、上下文和内容相似的示例。
注解:在问答或情绪分析等情况下,应适当地注释数据集,为模型提供需要学习的输入-输出对的示例。

   修改:根据任务的不同,您可能需要修改 BERT 的体系结构。这可能涉及添加新层(如用于情绪分析的分类层)或更改层的交互方式。
任务对齐:这些修改的目标是重塑模型的体系结构,以便它能够以对特定任务有用的方式处理和输出信息。

   结合知识:在此阶段,预训练的 BERT 模型将在特定数据集上进一步训练(微调)。此步骤利用了 BERT 从对大型数据语料库的初始训练中获得的广泛知识。
微调:在微调过程中,模型会调整其权重和参数,以更好地适应任务的特定模式和细微差别。这个过程不需要像初始培训那样长,因为BERT已经在语言理解方面打下了坚实的基础。

3.3 动手示例:使用 BERT 进行情绪分析

   下面是一个 Python 代码片段,演示了如何微调 BERT 以进行情绪分析。这个实际示例使用了 Hugging Face transformers库,这是处理 BERT 等模型的常用选择。

from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
import torch# Load a pre-trained BERT model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')# Sample texts for sentiment analysis
texts = ["I love this product!", "I hate this movie."]
labels = [1, 0]  # 1 for positive sentiment, 0 for negative
# Tokenize the texts
tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
input_ids, attention_mask = tokens["input_ids"], tokens["attention_mask"]
# Convert labels to tensor
labels = torch.tensor(labels).unsqueeze(0)
# Training arguments
training_args = TrainingArguments(output_dir='./results',num_train_epochs=3,per_device_train_batch_size=8,warmup_steps=500,weight_decay=0.01,logging_dir='./logs',
)
# Initialize the Trainer
trainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,eval_dataset=test_dataset
)
# Train the model
trainer.train()
# Save the fine-tuned model
model.save_pretrained("./sentiment_model")

四、结论

   本章阐明了BERT和迁移学习之间的协同作用,重点介绍了它们如何共同增强NLP应用。BERT对语言的深刻理解,加上迁移学习提供的效率和适应性,在该领域树立了新的标杆。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/651812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matplotlib 波士顿房价数据及可视化 Tensorflow 2.4.0

matplotlib 波士顿房价数据及可视化 Tensorflow 2.4.0 目录 matplotlib 波士顿房价数据及可视化 Tensorflow 2.4.0 1. 认识 1.1 kears 1.2 kears常用数据集 2. 波士顿房价数据及可视化 2.1 下载波士顿房价数据集 2.2 展示一个属性对房价的影响 2.3 将是三个属性全部展…

SpringBoot中实现阿里云OSS对象存储

背景 在业务中我们往往需要上传文件如图片,文件上传,是指将本地图片、视频、音频等文件上传到服务器上,可以供其他用户浏览或下载的过程。文件上传在项目中应用非常广泛,我们经常发抖音、发朋友圈都用到了文件上传功能。 实现文件…

CTF CRYPTO 密码学-6

题目名称:敲击 题目描述: 方方格格,不断敲击 “wdvtdz qsxdr werdzxc esxcfr uygbn” 解题过程: step1:根据题目描述敲击,wdvtdz对应的字符为x step2:依此类推r,z,o&…

【现代密码学基础】详解完美安全与香农定理

目录 一. 介绍 二. 完美安全的密钥与消息空间 三. 完美安全的密钥长度 四. 最优的完美安全方案 五. 香农定理 (1)理论分析 (2)严格的正向证明 (3)严格的反向证明 六. 小结 一. 介绍 一次一密方案…

【Android】非线性方程的求解寻根

目录 前言: 一、Apache-commons-math3介绍 二、具体简单实例 2.1 导入函数类 2.2 定义函数接口 2.3 使用求解器 2.3.1 布伦特法(Brent) 2.3.2 米勒(Muller)法 2.3.3 Newton-Raphson法 前言: 最近…

【GitHub项目推荐--不错的 TypeScript 学习项目】【转载】

在线白板工具 Excalidraw 标星 33k,是一款非常轻量的在线白板工具,可以直接在浏览器打开,轻松绘制具有手绘风格的图形。 如下图所示,Excalidraw 支持最常用的图形元素:方框、圆、菱形、线,可以方便的使用…

CSS设置单行文字水平垂直居中的方法

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>单行文字水平垂直居中</title><style>div {/* 给div设置宽高 */width: 400px;height: 200px;margin: 100px auto;background-color: red;/…

Spark——Spark读写Greenplum/Greenplum-Spark Connector高速写Greenplum

文章目录 问题背景解决方式代码实现Spark写GreenplumSpark读Greenplum 参考 问题背景 通过数据平台上的DataX把Hive表数据同步至Greenplum&#xff08;因为DataX原生不支持Greenplum Writer&#xff0c;只能采用PostgreSQL驱动的方式&#xff09;&#xff0c;但是同步速度太慢…

Mybatis的XML配置

MyBatis 是一个持久层框架&#xff0c;通过 XML 配置文件来定义 SQL 映射和结果的映射规则。以下是关于 MyBatis XML 配置文件的详细说明&#xff1a; 基本结构&#xff1a; XML 配置文件通常包含 <mapper>、<resultMap>、<typeAliases> 等元素。 2. mappe…

NoSQL基本内容

第一章 NoSQL 1.1 什么是NoSQL NoSQL&#xff08;Not Only SQL&#xff09;即不仅仅是SQL&#xff0c;泛指非关系型的数据库&#xff0c;它可以作为关系型数据库的良好补充。随着互联网web2.0网站的兴起&#xff0c;非关系型的数据库现在成了一个极其热门的新领域&#xff0c;…

(免费领源码)java#Springboot#mysql旅游景点订票系统68524-计算机毕业设计项目选题推荐

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化&#xff0c;电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流&#xff0c;人类发展的历史正进入一个新时代。在现实运用中&#xff0c;应用软件的工作…

网络安全02--负载均衡下的webshell连接

目录 一、环境准备 1.1ubentu虚拟机一台&#xff0c;docker环境&#xff0c;蚁剑 1.2环境压缩包&#xff08;文件已上传资源&#xff09;&#xff1a; 二、开始复原 2.1上传ubentu&#xff1a; 2.2解压缩 2.3版本20没有docker-compose手动下载&#xff0c;包已上传资源 …

人类基因组计划发现的8大真相

人类基因组计划是科学史上重要的里程碑事情。该计划的成功&#xff0c;不仅开启了人类了解自身的旅程&#xff0c;而且成为了国际科技合作的典范。对于人类基因组&#xff0c;发现了以下 8 个事实。 1. 人类基因组约有 20300 个蛋白质编码基因。这与最初预估的 30000 ~ 40000 个…

pytest教程-7-用例前后置方法

上一小节&#xff0c;我们学习了pytest跳过测试用例的方法&#xff0c;本小节我们讲解一下pytest用例的前后置方法。 在unittest中就有前置setup和后置teardown来处理测试用例执行前的准备工作&#xff08;浏览器驱动实例化&#xff0c;数据库连接等&#xff09;以及执行后的处…

JS之隐式转换与布尔判定

大家思考一下 [ ] [ ] &#xff1f; 答案是空字符串 为什么呢&#xff1f; 当做加法运算的时候&#xff0c;发现左右两端存在非原始类型&#xff0c;也就是引用类型对象&#xff0c;就会对对象做隐式类型转换 如何执行的&#xff1f;或者说怎么查找的&#xff1f; 第一步&…

IntelliJ IDE 插件开发 | (五)VFS 与编辑器

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门IntelliJ IDE 插件开发 |&#xff08;二&#xff09;UI 界面与数据持久化IntelliJ IDE 插件开发 |&#xff08;三&#xff09;消息通知与事件监听IntelliJ IDE 插件开发 |&#xff08;四&#xff09;来查收…

【GitHub项目推荐--不错的 React 开源项目】【转载】

用 React Flow 连接你的想法 用 React Flow 连接你的想法&#xff0c;这是一个高度可定制的库&#xff0c;基于 React 用于构建基于节点的 交互式 UI、编辑器、流程图和图表。 开源地址&#xff1a;https://github.com/wbkd/react-flow Bulletproof React 一个简单、可扩展且…

Xmind安装到指定目录

Xmind安装到指定目录 默认情况下安装包自动引导安装在C盘&#xff08;注册表默认位置&#xff09; T1:修改注册表&#xff0c;比较麻烦 T2:安装时命令行指定安装位置&#xff0c;快捷省事 1&#xff09;下载安装包&#xff08;exe可执行文件&#xff09; 2&#xff09;安装…

PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)

PyTorch深度学习实战&#xff08;33&#xff09;——条件生成对抗网络 0. 前言1. 条件生成对抗网络1.1 模型介绍1.2 模型与数据集分析 2. 实现条件生成对抗网络小结系列链接 0. 前言 条件生成对抗网络 (Conditional Generative Adversarial Network, CGAN) 是一种生成对抗网络…

IP报文格式(全网最详细)

IP报文格式 报文格式 图1 IP头格式 表1 IP头字段解释 字段长度含义Version4比特 4&#xff1a;表示为IPV4&#xff1b;6&#xff1a;表示为IPV6。IHL4比特首部长度&#xff0c;如果不带Option字段&#xff0c;则为20&#xff0c;最长为60&#xff0c;该值限制了记录路由选项。…