matplotlib 波士顿房价数据及可视化 Tensorflow 2.4.0

matplotlib 波士顿房价数据及可视化 Tensorflow 2.4.0

目录

matplotlib 波士顿房价数据及可视化 Tensorflow 2.4.0

1. 认识

1.1 kears

1.2 kears常用数据集

2. 波士顿房价数据及可视化

2.1 下载波士顿房价数据集

2.2 展示一个属性对房价的影响

2.3 将是三个属性全部展示

1. 认识

1.1 kears

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK 或者 Theano 作为后端运行。它提供了一套用户友好的API,用于快速构建和训练深度学习模型。

以下是Keras的一些关键特点:

  1. 模块化和可扩展性:Keras采用面向对象的方法编写,具有良好的模块化设计。这使得用户能够轻松地添加新模块,以扩展现有的功能。
  2. 跨平台运行:Keras支持在CPU和GPU上无缝切换运行,这为不同的计算需求提供了灵活性。
  3. 易于使用的API:Keras提供了一系列高层的神经网络模块,如全连接层(Dense)、卷积层(Conv2D)和长短时记忆模型(LSTM),使得开发者无需从头编写这些复杂模块的代码。
  4. 与TensorFlow的集成:在TensorFlow 2.0及以后的版本中,Keras被集成为tf.keras,成为TensorFlow的官方高级API。这意味着Keras的功能得到了TensorFlow的强大支持,同时保持了与原始Keras的高度兼容性。

总的来说,Keras因其简洁的接口和强大的功能,成为了深度学习研究人员和开发者广泛使用的框架之一。无论是进行学术研究还是商业应用开发,Keras都提供了一个高效且便捷的工具,以支持深度学习模型的实现和部署。

1.2 kears常用数据集

Keras提供了多种常用的数据集,以便于用户进行模型的训练和测试。

以下是一些Keras中常用的数据集及其简要介绍:

CIFAR10这是一个小型的图像分类数据集,包含了60,000张32x32的彩色图像,分为10个类别,每个类别有6,000张图像。其中50,000张用于训练,10,000张用于测试
CIFAR100与CIFAR10类似,但包含100个类别的小型图像分类数据集,总共有50,000张训练图像和10,000张测试图像。
IMDB这是一个电影评论情感分类数据集,常用于文本分类任务,特别是情感分析。
MNIST一个广泛使用的手写数字识别数据集,包含28x28灰度图像,共有10个类别,从0到9。
Fashion-MNIST这是一个替代MNIST的数据集,包含了时尚相关的物品,同样有10个类别的28x28灰度图像。
Boston Housing房价回归数据集,用于预测波士顿地区房屋的中位数价格。
Pima Indians Diabetes Dataset
  1. 这个数据集来自UCI机器学习库,用于二分类问题,预测Pima印第安人是否患有糖尿病。

此外,Keras还允许用户方便地加载其他公开数据集,如在官方文档中提到的其他7种数据集。同时,Keras也支持用户自定义数据集,以便进行更加个性化的模型训练和测试。

下面主要介绍波士顿房价数据集可视化

2. 波士顿房价数据及可视化

2.1 下载波士顿房价数据集

该数据集来自卡内基梅隆大学维护的 StatLib 库。样本包含 1970 年代的在波士顿郊区不同位置的房屋信息,总共有 13 种房屋属性。 目标值是一个位置的房屋的中值(单位:k$)。数据集很小,只有506个案例。数据集有以下14个属性:

CRIM城镇人均犯罪率
ZN占地面积超过25,000平方英尺的住宅用地比例。
INDUS每个城镇非零售业务的比例。
CHASCharles River虚拟变量(如果是河道,则为1;否则为0)
NOX一氧化氮浓度(每千万份)
RM每间住宅的平均房间数
AGE1940年以前建造的自住单位比例
DIS波士顿的五个就业中心加权距离    
RAD径向高速公路的可达性指数
TAX每10,000美元的全额物业税率
PTRATIO城镇的学生与教师比例
B城镇中黑人比例
LSTAT人口状况下降%
MEDV自有住房的中位数报价, 单位1000美元
import tensorflow as tf  # 导入TensorFlow库
boston_housing = tf.keras.datasets.boston_housing  # 加载波士顿房价数据集
(train_x, train_y), (test_x, test_y) = boston_housing.load_data(test_split=0.2)  # 将数据集分为训练集和测试集,其中测试集占20%
print("Training set:", len(train_x))  # 打印训练集的大小
print("Testing set:", len(test_x))  # 打印测试集的大小
print(type(train_x))  # 打印训练集数据类型
print(type(train_y))  # 打印训练集标签数据类型
print("Dim of train_x:", train_x.ndim)  # 打印训练集数据的维度
print("Shape of train_x:", train_x.shape)  # 打印训练集数据的形状print("Dim of train_y:", train_y.ndim)  # 打印训练集标签的维度
print("Shape of train_y:", train_y.shape)  # 打印训练集标签的形状print(train_x[0:5])  # 打印训练集前5个样本的数据print(train_x[:, 5])  # 打印训练集所有样本的第6列数据

注意: 缓存本地数据集的位置 (相对路径 ~/.keras/datasets)。例如我的放在C:\Users\ASUS\.keras\datasets文件夹下。如果不能下载可以自己在网上下载波士顿房价数据集将数据集放在.keras\datasets文件夹下。就可以正常运行。

2.2 展示一个属性对房价的影响

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tfboston_housing = tf.keras.datasets.boston_housing
(train_x, train_y), (test_x, test_y) = boston_housing.load_data(test_split=0)# 选择"RM"属性
rm = train_x[:,5]
prices = train_yplt.scatter(rm, prices)
plt.xlabel('Average number of rooms per dwelling (RM)')
plt.ylabel('House prices')
plt.title('Relationship between RM and House Prices')
plt.show()

2.3 将是三个属性全部展示

# 将十三个属性全部展示出来
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tfboston_housing = tf.keras.datasets.boston_housing
(train_x, train_y), (test_x, test_y) = boston_housing.load_data(test_split=0)
titles = ["CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS","RAD","TAX","PTRATIO","B-1000","LSTAT","MEDV"]
# 创建一个新的图形
plt.figure(figsize=(12, 12))# 对于每一个属性,我们都画出一个散点图
for i in range(13):plt.subplot(4, 4, i+1)  # 创建一个4x4的子图,并选择第i+1个子图plt.scatter(train_x[:, i], train_y)  # 在子图中画出散点图plt.xlabel(titles[i])plt.ylabel("Price")#plt.title(str(i+1)+"."+titles[i])  # 设置子图的标题# 显示图形
plt.tight_layout()plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/651811.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CTF CRYPTO 密码学-6

题目名称:敲击 题目描述: 方方格格,不断敲击 “wdvtdz qsxdr werdzxc esxcfr uygbn” 解题过程: step1:根据题目描述敲击,wdvtdz对应的字符为x step2:依此类推r,z,o&…

【现代密码学基础】详解完美安全与香农定理

目录 一. 介绍 二. 完美安全的密钥与消息空间 三. 完美安全的密钥长度 四. 最优的完美安全方案 五. 香农定理 (1)理论分析 (2)严格的正向证明 (3)严格的反向证明 六. 小结 一. 介绍 一次一密方案…

【GitHub项目推荐--不错的 TypeScript 学习项目】【转载】

在线白板工具 Excalidraw 标星 33k,是一款非常轻量的在线白板工具,可以直接在浏览器打开,轻松绘制具有手绘风格的图形。 如下图所示,Excalidraw 支持最常用的图形元素:方框、圆、菱形、线,可以方便的使用…

CSS设置单行文字水平垂直居中的方法

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>单行文字水平垂直居中</title><style>div {/* 给div设置宽高 */width: 400px;height: 200px;margin: 100px auto;background-color: red;/…

NoSQL基本内容

第一章 NoSQL 1.1 什么是NoSQL NoSQL&#xff08;Not Only SQL&#xff09;即不仅仅是SQL&#xff0c;泛指非关系型的数据库&#xff0c;它可以作为关系型数据库的良好补充。随着互联网web2.0网站的兴起&#xff0c;非关系型的数据库现在成了一个极其热门的新领域&#xff0c;…

(免费领源码)java#Springboot#mysql旅游景点订票系统68524-计算机毕业设计项目选题推荐

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化&#xff0c;电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流&#xff0c;人类发展的历史正进入一个新时代。在现实运用中&#xff0c;应用软件的工作…

网络安全02--负载均衡下的webshell连接

目录 一、环境准备 1.1ubentu虚拟机一台&#xff0c;docker环境&#xff0c;蚁剑 1.2环境压缩包&#xff08;文件已上传资源&#xff09;&#xff1a; 二、开始复原 2.1上传ubentu&#xff1a; 2.2解压缩 2.3版本20没有docker-compose手动下载&#xff0c;包已上传资源 …

人类基因组计划发现的8大真相

人类基因组计划是科学史上重要的里程碑事情。该计划的成功&#xff0c;不仅开启了人类了解自身的旅程&#xff0c;而且成为了国际科技合作的典范。对于人类基因组&#xff0c;发现了以下 8 个事实。 1. 人类基因组约有 20300 个蛋白质编码基因。这与最初预估的 30000 ~ 40000 个…

pytest教程-7-用例前后置方法

上一小节&#xff0c;我们学习了pytest跳过测试用例的方法&#xff0c;本小节我们讲解一下pytest用例的前后置方法。 在unittest中就有前置setup和后置teardown来处理测试用例执行前的准备工作&#xff08;浏览器驱动实例化&#xff0c;数据库连接等&#xff09;以及执行后的处…

JS之隐式转换与布尔判定

大家思考一下 [ ] [ ] &#xff1f; 答案是空字符串 为什么呢&#xff1f; 当做加法运算的时候&#xff0c;发现左右两端存在非原始类型&#xff0c;也就是引用类型对象&#xff0c;就会对对象做隐式类型转换 如何执行的&#xff1f;或者说怎么查找的&#xff1f; 第一步&…

IntelliJ IDE 插件开发 | (五)VFS 与编辑器

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门IntelliJ IDE 插件开发 |&#xff08;二&#xff09;UI 界面与数据持久化IntelliJ IDE 插件开发 |&#xff08;三&#xff09;消息通知与事件监听IntelliJ IDE 插件开发 |&#xff08;四&#xff09;来查收…

【GitHub项目推荐--不错的 React 开源项目】【转载】

用 React Flow 连接你的想法 用 React Flow 连接你的想法&#xff0c;这是一个高度可定制的库&#xff0c;基于 React 用于构建基于节点的 交互式 UI、编辑器、流程图和图表。 开源地址&#xff1a;https://github.com/wbkd/react-flow Bulletproof React 一个简单、可扩展且…

PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)

PyTorch深度学习实战&#xff08;33&#xff09;——条件生成对抗网络 0. 前言1. 条件生成对抗网络1.1 模型介绍1.2 模型与数据集分析 2. 实现条件生成对抗网络小结系列链接 0. 前言 条件生成对抗网络 (Conditional Generative Adversarial Network, CGAN) 是一种生成对抗网络…

IP报文格式(全网最详细)

IP报文格式 报文格式 图1 IP头格式 表1 IP头字段解释 字段长度含义Version4比特 4&#xff1a;表示为IPV4&#xff1b;6&#xff1a;表示为IPV6。IHL4比特首部长度&#xff0c;如果不带Option字段&#xff0c;则为20&#xff0c;最长为60&#xff0c;该值限制了记录路由选项。…

AutoGen实战应用(二):多代理协作(Multi-Agent Collaboration)

AutoGen是微软推出的一个全新工具&#xff0c;它用来帮助开发者创建基于大语言模型(LLM)的复杂应用程序. AutoGen能让LLM在复杂工作流程启用多个角色代理来共同协作完成人类提出的任务。在我之前的一篇博客: AutoGen实战应用(一)&#xff1a;代码生成、执行和调试 中我们通过一…

【RabbitMQ】交换机的概念及使用

一、引言 1、什么是交换机 RabbitMQ中&#xff0c;交换机是一个核心概念&#xff0c;主要用来将生产者生产出来的消息&#xff0c;传送到对应的队列中。实际上&#xff0c;生产者生产的消息从不会直接发送到队列&#xff0c;而是发送到交换机。交换机一方面接收来自生产者的消…

SpringBoot项目配置SSL后,WebSocket连接失败的解决方案

SpringBoot项目配置SSL后&#xff0c;WebSocket连接应使用wss协议&#xff0c;而不是ws协议。在前端配置WebSocket时&#xff0c;URL以wss://开头。

嵌入式学习第十二天

8.数组指针和指针数组&#xff08;2&#xff09;: &#xff08;1&#xff09;指针数组&#xff1a; int *a[5]; char *str[5]; 指针数组主要用来操作字符串数组,通过将指针数组的每个元素存放字符串的首地址实现对多个字符串的操作 二维数组主要用来存储字符串数组…

Nodejs前端学习Day3_准备工作

妈的&#xff0c;这几天真tm冷&#xff0c;前天上午还下了一整天的雪&#xff0c;大雪 文章目录 前言一、Node.js简介1.1何为1.2有什么 二、Node.js可以做什么三、学习路线四、下载nodejs4.1小坑记录4.2LTS和Current版本的不同 五、什么是终端六、在nodejs中执行js代码七、powe…

Kubernetes(K8S)各种攻击方法

1. 准备工作 1.1. metarget使用 项目地址(教程):https://github.com/Metarget/metarget/blob/master/README-zh.md 注意:推荐在Ubuntu 18.04(推荐)安装。 1.1.1. 安装metarget git clone https://github.com/Metarget/metarget.git cd metarget/ sudo apt install pyt…