深入浅出理解目标检测的非极大值抑制(NMS)

一、参考资料

物体检测中常用的几个概念迁移学习、IOU、NMS理解

目标定位和检测系列(3):交并比(IOU)和非极大值抑制(NMS)的python实现

Pytorch:目标检测网络-非极大值抑制(NMS)

二、非极大值抑制(NMS)相关介绍

1. NMS的概念

非极大抑制(non maximum suppression, NMS),顾名思义就是抑制不是极大值的元素,搜索局部的极大值。在最近几年常见的物体检测算法(包括rcnn、sppnet、fast-rcnn、faster-rcnn等)中,最终都会从一张图片中找出很多个可能是物体的矩形框,然后为每个矩形框为做类别分类概率。

就像下面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。

在这里插入图片描述

所谓非极大值抑制,先假设有6个矩形框,根据分类器类别分类概率做排序,从小到大分别属于车辆的概率分别为A<B<C<D<E<F。

  1. 从最大概率矩形框F开始,分别判断A、B、C、D、E与F的重叠度IOU是否大于某个设定的阈值;
  2. 假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的;
  3. 从剩下的矩形框A、C、E中,选择概率最大的E,然后判断A、C与E的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框;
  4. 重复这个过程,找到所有被保留下来的矩形框。

2. YOLO中的NMS

对于每一个种类的概率,比如Dog,我们将所有98个框按照预测概率从高到低排序(为方便计算,排序前可以剔除极小概率的框,也就是把它们的概率置为0),然后通过非极大抑制NMS方法,继续剔除多余的框:

img

NMS方法在这里如何运行呢?首先因为经过了排序,所以第一个框是概率最大的框(下图橘色)。然后继续扫描下一个框跟第一个框,看是否IOU大于0.5:

img

的确IOU大于0.5,那么第二个框是多余的,将它剔除:

img

继续扫描到第三个框,它与最大概率框的IOU小于0.5,需要保留:

img

继续扫描到第四个框,同理需要保留:

img

继续扫描后面的框,直到所有框都与第一个框比较完毕。此时保留了不少框。

接下来,以次大概率的框(因为一开始排序过,它在顺序上也一定是保留框中最靠近上一轮的基础框的)为基础,将它后面的其它框于之比较。

如比较第4个框与之的IOU:

img

IOU大于0.5,所以可以剔除第4个框:

img

总之在经历了所有的扫描之后,对Dog类别只留下了两个框:

img

这时候,或许会有疑问:明显留下来的蓝色框,并非Dog,为什么要留下?因为对计算机来说,图片可能出现两只Dog,保留概率不为0的框是安全的。不过的确后续设置了一定的阈值(比如0.3)来删除掉概率太低的框,这里的蓝色框在最后并没有保留,因为它在20种类别里要么因为IOU不够而被删除,要么因为最后阈值不够而被剔除。

上面描述了对Dog种类进行的框选择。接下来,我们还要对其它19种类别分别进行上面的操作。最后进行纵向跨类的比较(为什么?因为上面就算保留了橘色框为最大概率的Dog框,但该框可能在Cat的类别也为概率最大且比Dog的概率更大,那么我们最终要判断该框为Cat而不是Dog)。判定流程和法则如下:

img

得到最终的结果:

img

三、相关经验

1. NMS代码实现

NMS的算法步骤如下:

# INPUT:所有预测出的bounding box (bbx)信息(坐标和置信度confidence), IOU阈值(大于该阈值的bbx将被移除)
for object in all objects:(1) 获取当前目标类别下所有bbx的信息(2) 将bbx按照confidence从高到低排序,并记录当前confidence最大的bbx(3) 计算最大confidence对应的bbx与剩下所有的bbx的IOU,移除所有大于IOU阈值的bbx(4) 对剩下的bbx,循环执行(2)(3)直到所有的bbx均满足要求(即不能再移除bbx)

需要注意的是,NMS是对所有的类别分别执行的。举个栗子,假设最后预测出的矩形框有2类(分别为cup, pen),在NMS之前,每个类别可能都会有不只一个bbx被预测出来,这个时候我们需要对这两个类别分别执行一次NMS过程。
我们用python编写NMS代码,假设对于一张图片,所有的bbx信息已经保存在一个字典中,保存形式如下:

predicts_dict: {"cup": [[x1_1, y1_1, x2_1, y2_1, scores1], [x1_2, y1_2, x2_2, y2_2, scores2], ...], "pen": [[x1_1, y1_1, x2_1, y2_1, scores1], [x1_2, y1_2, x2_2, y2_2, scores2], ...]}

即目标的位置和置信度用列表储存,每个列表中的一个子列表代表一个bbx信息。

详细的代码如下:

import numpy as np
def non_max_suppress(predicts_dict, threshold=0.2):"""implement non-maximum supression on predict bounding boxes.Args:predicts_dict: {"stick": [[x1, y1, x2, y2, scores1], [...]]}.threshhold: iou thresholdReturn:predicts_dict processed by non-maximum suppression"""for object_name, bbox in predicts_dict.items():   #对每一个类别的目标分别进行NMSbbox_array = np.array(bbox, dtype=np.float)## 获取当前目标类别下所有矩形框(bounding box,下面简称bbx)的坐标和confidence,并计算所有bbx的面积x1, y1, x2, y2, scores = bbox_array[:,0], bbox_array[:,1], bbox_array[:,2], bbox_array[:,3], bbox_array[:,4]areas = (x2-x1+1) * (y2-y1+1)#print("areas shape = ", areas.shape)## 对当前类别下所有的bbx的confidence进行从高到低排序(order保存索引信息)order = scores.argsort()[::-1]print("order = ", order)keep = [] #用来存放最终保留的bbx的索引信息## 依次从按confidence从高到低遍历bbx,移除所有与该矩形框的IOU值大于threshold的矩形框while order.size > 0:i = order[0]keep.append(i) #保留当前最大confidence对应的bbx索引## 获取所有与当前bbx的交集对应的左上角和右下角坐标,并计算IOU(注意这里是同时计算一个bbx与其他所有bbx的IOU)xx1 = np.maximum(x1[i], x1[order[1:]]) #当order.size=1时,下面的计算结果都为np.array([]),不影响最终结果yy1 = np.maximum(y1[i], y1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])yy2 = np.minimum(y2[i], y2[order[1:]])inter = np.maximum(0.0, xx2-xx1+1) * np.maximum(0.0, yy2-yy1+1)iou = inter/(areas[i]+areas[order[1:]]-inter)print("iou =", iou)print(np.where(iou<=threshold)) #输出没有被移除的bbx索引(相对于iou向量的索引)indexs = np.where(iou<=threshold)[0] + 1 #获取保留下来的索引(因为没有计算与自身的IOU,所以索引相差1,需要加上)print("indexs = ", type(indexs))order = order[indexs] #更新保留下来的索引print("order = ", order)bbox = bbox_array[keep]predicts_dict[object_name] = bbox.tolist()predicts_dict = predicts_dictreturn predicts_dict

2. 行人检测中的NMS

论文阅读【FCOS】_Rock的博客-CSDN博客_fcos论文

如果两个人靠得很近,将很难确定NMS的阈值,太大则会导致误检多,太小导致漏检多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/650931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习整理

绪论 什么是机器学习&#xff1f; 机器学习研究能够从经验中自动提升自身性能的计算机算法。 机器学习经历了哪几个阶段&#xff1f; 推理期&#xff1a;赋予机器逻辑推理能力 知识期&#xff1a;使机器拥有知识 学习期&#xff1a;让机器自己学习 什么是有监督学习和无监…

CubeMX生成工程文件夹解释

使用CubeMXKeil的工程&#xff0c;物理文件夹结构如下&#xff1a; 文件夹、文件&#xff0c;众多&#xff0c;但我们平时使用到的&#xff0c;主要是两个入口文件&#xff0c;即以下的&#xff1a;1和2. 1、***.uvprojx 位置&#xff1a;工程目录\MDK-ART文件夹下。 Keil的工…

【C++】STL和vector容器

STL和vector容器 基本概念六大组件容器算法迭代器容器算法迭代器 vector容器基本概念vector构造函数赋值vector的容量和大小vector插入与删除vector存取数据函数原型 vector互换容器vector预留空间vector容器嵌套容器 基本概念 长久以来&#xff0c;软件届一直希望建立一种可重…

基于 java+springboot+mybatis电影售票网站管理系统前台+后台设计和实现

基于 javaspringbootmybatis电影售票网站管理系统前台后台设计和实现 &#x1f345; 作者主页 央顺技术团队 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; &#x1f345; 查看下方微信号获取联系方式 承…

国内首个!亚信安全获得CCRC数据分类分级产品认证证书

亚信安全信数数据分类分级系统AISDC V1.0&#xff0c;荣获中国网络安全审查认证和市场监管大数据中心颁发的首个数据分类分级产品IT产品信息安全认证证书&#xff01;标志着亚信安全在大数据安全领域的强大技术实力以及专业研究&#xff0c;正式获得国内数据分类分级产品评定的…

通过LiveNVR实现海康大华华为宇视等监控摄像头在服务器上录像存储,并web无插件直播和回放

支持云端录像服务器上面集中录像存储在部署LiveNVR的服务器上面 1、流媒体服务软件2、配置开启录像(云端录像)3、录像回看(云端录像)3.1、查看录像3.1.1、时间轴视图3.1.2、列表视图 4、云端录像相关接口5、如何分享时间轴录像回看&#xff1f;6、iframe集成示例7、RTSP/HLS/FL…

centos 7 增加临时路由及永久路由

centos 7 增加临时路由及永久路由 如果增加临时路由&#xff0c;要先安装net-tools , sudo yum install net-tools route add -net 10.1.0.0 gw 10.1.1.1 netmask 255.255.0.0 意思是增加了一条动态路由&#xff0c;网关10.1.1.1 ,10.1.x.x 的所有ip都走这个网关 此种方式&am…

[框架系列]-[通用lock框架]集成及具体配置使用

目录 一&#xff1a;框架集成 1.添加pom依赖 2.开启lock配置 二&#xff1a;配置详细介绍 1.配置清单 2.具体配置介绍 &#xff08;1&#xff09;implementer &#xff08;2&#xff09;type &#xff08;3&#xff09;transactionStrategy &#xff08;4&#xff09…

Dev-Home:又一个开发人员控制中心神器,微软官方出品!

前两周&#xff0c;微软针对开发人员推出的windows控制中心&#xff1a;Dev-Home&#xff0c;迎来了0.9的预览版&#xff0c;这次重点的更新是支持Window 10了&#xff0c;之前一直都只支持Windows 11。 Dev-Home核心有两个功能&#xff1a;系统监控小组件和Gtihub扩展小组件。…

ISO 14229和UDS:汽车诊断的黄金标准

UDS简介&#xff1a; UDS是Unified Diagnostic Services的缩写&#xff0c;全名统一诊断服务。它是一种用于汽车电子控制单元&#xff08;ECU&#xff09;之间进行诊断和通信的标准协议&#xff0c;属于ISO 14229标准的一部分。 UDS的起源和背景&#xff1a; UDS的起源可以追…

一个处理Range List的面试题解法

大纲 题目解法Rangeaddremove ToolsRangeListaddremove 代码 最近看到一个比较有意思的面试题。题目不算难&#xff0c;但是想把效率优化做好&#xff0c;也没那么容易。 我们先看下题目 题目 // Task: Implement a class named RangeList // A pair of integers define a ra…

【C++】C++中的【文件IO流】使用指南 [手把手代码演示] & [小白秒懂]

前言 大家好吖&#xff0c;欢迎来到 YY 滴 系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的《Linux》…

JavaEE-自定义SSM-编写核心-解析yml文件

3.3.1 加载yml文件 编写yaml工厂&#xff0c;用于加载yml文件 package com.czxy.yaml;import java.io.InputStream;/*** 用于处理 application.yml文件* 1. 加载application.yml文件* 2. yaml工具类进行解析* Map<String, Map<String, Map<....>> >* …

Linux使用二进制包安装MySQL

目录 一、软件包下载 二、上传软件包到Linux根目录 1、使用xftp将软件包上传到根目录 2、解压缩 三、准备工作 四、初始化软件 五、设置MySQL的配置文件 六、配置启动脚本 一、软件包下载 官网下载&#xff1a;MySQL :: Download MySQL Community Server 二、上传软件…

AWTK 开源串口屏开发(8) - 系统设置

AWTK 开源串口屏开发 - 系统设置 系统设置只是一个普通应用程序&#xff0c;不过它会用 默认模型 中一些内置的属性和命令&#xff0c;所以这里专门来介绍一下。 1. 功能 在这个例子会用到 默认模型 中一些下列内置的属性和命令&#xff1a; 内置属性 属性类型说明rtc_yea…

【Unity3D日常开发】Unity3D中设置Text行首不出现标点符号

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 在开发中会遇到Text的文本内容行首出现标点符号的情况&#xf…

PyTorch初探:基本函数与案例实践

正文&#xff1a; 在熟悉了PyTorch的安装和环境配置后&#xff0c;接下来让我们深入了解PyTorch的基本函数&#xff0c;并通过一个简单的案例来实践这些知识。 1. 基本函数 PyTorch的核心是张量&#xff08;Tensor&#xff09;&#xff0c;它类似于多维数组&#xff0c;但可以…

Cesium加载地图-高德影像

废话不多说&#xff0c;直接上代码 整体代码 <template><div id"cesiumContainer" style"height: 100vh;"></div><div id"toolbar" style"position: fixed;top:20px;left:220px;"><el-breadcrumb><…

hive面试题

0. 思维导图 1. 简述Hive♥♥ 我理解的&#xff0c;hive就是一款构建数据仓库的工具&#xff0c;它可以就结构化的数据映射为一张表&#xff0c;并且可以通过SQL语句进行查询分析。本质上是将SQL转换为MapReduce或者spark来进行计算&#xff0c;数据是存储在hdfs上&#xff0c;…

【word】论文、报告:①插入图表题注,交叉引用②快速插入图表目录③删改后一键更新

【word】①插入图表题注&#xff0c;②删改后一键更新 写在最前面插入题注交叉引用修改插入题注的文字格式快速插入图表目录 插入题注后有删改&#xff0c;实现编号一键更新 &#x1f308;你好呀&#xff01;我是 是Yu欸 &#x1f30c; 2024每日百字篆刻时光&#xff0c;感谢你…