8. 损失函数与反向传播

8.1 损失函数

① Loss损失函数一方面计算实际输出和目标之间的差距。

② Loss损失函数另一方面为我们更新输出提供一定的依据。

8.2 L1loss损失函数 

 ① L1loss数学公式如下图所示,例子如下下图所示。

import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss()  # 默认为 maen
result = loss(inputs,targets)
print(result)

结果:

tensor(0.6667)
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum') # 修改为sum,三个值的差值,然后取和
result = loss(inputs,targets)
print(result)

结果:

tensor(2.)

8.3  MSE损失函数

 ① MSE损失函数数学公式如下图所示。

 

import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)

结果:

tensor(1.3333)

 8.4 交叉熵损失函数

① 交叉熵损失函数数学公式如下图所示。

 

 

import torch
from torch.nn import L1Loss
from torch import nnx = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3)) # 1的 batch_size,有三类
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)

结果:

tensor(1.1019)

 8.5 搭建神经网络

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=1,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()        self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xtudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)print(outputs)print(targets)

结果:

 8.6 数据集计算损失函数

 

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()        self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距print(result_loss)

结果:

 8.7 损失函数反向传播

① 反向传播通过梯度来更新参数,使得loss损失最小,如下图所示。

 

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()        self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距result_loss.backward()  # 计算出来的 loss 值有 backward 方法属性,反向传播来计算每个节点的更新的参数。这里查看网络的属性 grad 梯度属性刚开始没有,反向传播计算出来后才有,后面优化器会利用梯度优化网络参数。      print("ok")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/64700.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django静态文件媒体文件文件上传

文章目录 一、静态文件和媒体文件1.在django中使用静态文件实践2.在django中使用媒体文件 二、文件上传单文件上传实践多文件上传 一、静态文件和媒体文件 媒体文件: 用户上传的文件,叫做media 静态文件:存放在服务器的css,js,image,font等 叫做static1.在django中…

【Locomotor运动模块】瞬移

文章目录 一、原理二、两种类型1、Instant(立刻)2、Dash(猛冲) 三、瞬移区域、瞬移点1、瞬移区域2、瞬移点 一、原理 抛物线指针选择好目标位置,然后告诉瞬移预设体:你想法把游戏区域弄到目标位置来 解释:抛物线指针选…

JS中的new操作符

文章目录 JS中的new操作符一、什么是new?二、new经历了什么过程?三、new的过程分析四、总结 JS中的new操作符 参考:https://www.cnblogs.com/buildnewhomeland/p/12797537.html 一、什么是new? 在JS中,new的作用是通过…

React笔记(八)Redux

一、安装和配置 React 官方并没有提供对应的状态机插件,因此,我们需要下载第三方的状态机插件 —— Redux。 1、下载Redux 在终端中定位到项目根目录,然后执行以下命令下载 Redux npm i redux 2、创建配置文件 在 React 中,…

FreeRTOS的信号量和互斥量之间的区别和联系

文章目录 信号量信号量简介信号量特征 互斥量互斥量的上锁机制互斥量的优先级继承机制 二值信号量和互斥量的作用二值信号量的作用互斥量的作用 二值信号量和互斥锁关系相同点不同点 如何根据场景选择回答信号量和互斥锁之间的区别: 信号量 信号量简介 队列(queue)…

大集合按照指定长度进行分割成多个小集合,用于批量多次处理数据

📚目录 拆分案例拆分的核心代码 通常我们对集合的更新或者保存都需要用集合来承载通过插入的效率,但是这个会遇到一个问题就是你不知道那天那个集合的数量可能就超了,虽然我们连接数据库进行批量提交会在配置上配置allowMultiQueriestrue,但是…

类和对象(下)

💓博主个人主页:不是笨小孩👀 ⏩专栏分类:数据结构与算法👀 C👀 刷题专栏👀 C语言👀 🚚代码仓库:笨小孩的代码库👀 ⏩社区:不是笨小孩👀 🌹欢迎大…

【uniapp】 实现公共弹窗的封装以及调用

图例&#xff1a;红框区域为 “ 内容区域 ” 一、组件 <!-- 弹窗组件 --> <template> <view class"add_popup" v-if"person.isShowPopup"><view class"popup_cont" :style"{width:props.width&&props.width&…

mybatis源码学习-1-调试环境

写在前面,这里会有很多借鉴的内容,有以下三个原因 本博客只是作为本人学习记录并用以分享,并不是专业的技术型博客笔者是位刚刚开始尝试阅读源码的人,对源码的阅读流程乃至整体架构并不熟悉,观看他人博客可以帮助我快速入门如果只是笔者自己观看,难免会有很多弄不懂乃至理解错误…

Spring源码解析-总览

1、前言 Spring源码一直贯穿我们Java的开发中&#xff0c;只要你是一个Java开发人员就一定知道Spring全家桶。Spring全家桶为我们一共一站式服务&#xff0c;IOC、AOP更是Spring显著特性。但是Spring到底怎么为我们提供容器&#xff0c;管理资源的呢&#xff1f;下来&#xff0…

Ubuntu学习---跟着绍发学linux课程记录(第二部分)

文章目录 7 文件权限7.1 文件的权限7.2 修改文件权限7.3 修改文件的属主 8、可执行脚本8.2Shell脚本8.3python脚本的创建 9Shell9.1Shell中的变量9.2 环境变量9.3用户环境变量 学习链接: Ubuntu 21.04乌班图 Linux使用教程_60集Linux课程 所有资料在 http://afanihao.cn/java …

学生管理系统VueAjax版本

学生管理系统VueAjax版本 使用Vue和Ajax对原有学生管理系统进行优化 1.准备工作 创建AjaxResult类&#xff0c;对Ajax回传的信息封装在对象中 package com.grg.Result;/*** Author Grg* Date 2023/8/30 8:51* PackageName:com.grg.Result* ClassName: AjaxResult* Descript…

Java抛出异常

当某个方法抛出了异常时&#xff0c;如果当前方法没有捕获异常&#xff0c;异常就会被抛到上层调用方法&#xff0c;直到遇到某个try ... catch被捕获为止 调用printStackTrace()可以打印异常的传播栈&#xff0c;对于调试非常有用&#xff1b;捕获异常并再次抛出新的异常时&am…

项目-IM

tim-server tim-server启动类实现CommandLineRunner接口&#xff0c;重写run()方法 run()方法开启一个线程&#xff0c;创建zk持久父节点&#xff0c;创建临时顺序子节点&#xff0c;将netty-server信息写入 1.1 用户登录 1.2 gateway向认证授权中心请求token 1.3 从zookee…

在windows上安装Cmake软件

Cmake是一个跨语言、跨平台、开源的编译工具&#xff0c;可以编译C、C、Note.js、JavaScript、C#、Java、Python、Php、Object-C、Ruby等工程&#xff0c;需要设置对应的src源码目录、ext第三方依赖目录、CMakeList.txt构建列表&#xff0c;再使用cmake命令即可。     2023年…

程序员自由创业周记#2:前期准备

感恩 上次公开了创业的决定后&#xff0c;得到了很多亲朋好友和陌生朋友的鼓励或支持&#xff0c;以不同的形式&#xff0c;感动之情溢于言表。这些都会记在心里&#xff0c;大恩不言谢~ 创业方向 笔者是一名资质平平的iOS开发程序猿&#xff0c;创业项目也就是开发App卖&am…

Jmeter(二十九):Jmeter常用场景梳理

一、每秒钟固定调用次数 如果想控制每秒发送请求数量,仅仅通过线程数与循环次数是不够的,因为这只能控制发送总数,而要控制每秒发送数量,需要线程数与常数吞吐量控制器的搭配使用,这种场景在性能测试中使用不多。 例如每秒钟调用30次接口,那么把线程数设置为30,将常数…

Netty-ChannelPipeline

EventLoop可以说是 Netty 的调度中心&#xff0c;负责监听多种事件类型&#xff1a;I/O 事件、信号事件、定时事件等&#xff0c;然而实际的业务处理逻辑则是由 ChannelPipeline 中所定义的 ChannelHandler 完成的&#xff0c;ChannelPipeline 和 ChannelHandler应用开发的过程…

C语言(第三十三天)

3.1.2 画图推演 3.2 举例2&#xff1a;顺序打印一个整数的每一位 输入一个整数m&#xff0c;打印这个按照顺序打印整数的每一位。 比如&#xff1a; 输入&#xff1a;1234 输出&#xff1a;1 2 3 4 输入&#xff1a;520 输出&#xff1a;5 2 0 3.2.1 分析和代码实现 这个题目&a…

数据结构--队列与循环队列

队列 队列是什么&#xff0c;先联想一下队&#xff0c;排队先来的人排前面先出&#xff0c;后来的人排后面后出&#xff1b;队列的性质也一样&#xff0c;先进队列的数据先出&#xff0c;后进队列的后出&#xff1b;就像图一的样子&#xff1a; 图1 如图1&#xff0c;1号元素是…