大模型综述论文笔记1-5

目录

  • Keywords
  • Introduction
    • SLM
    • NLM
    • PLM
    • LLM
  • Backgroud for LLMs
    • Scaling Laws for LLMs
      • KM scaling law
      • Chinchilla scaling law
    • Emergent Abilities of LLMs
      • In-context learning
      • Instruction following
      • Step-by-step reasoning
    • Key Techniques for LLMs
      • Scaling
      • Training
      • Ability eliciting
      • Alignment tuning
      • Tools manipulation

Keywords

PLMs:pre-trained language models
NLP:natural language processing
LLM:large language models
LM:language modeling
AI:artificial intelligence
SLM:statistical language models
NLM:Neural language models
RNNs:recurrent neural networks
ELMo:Embedding from Language Models
AGI:artificial general intelligence
ICL:In-context learning

Introduction

https://github.com/RUCAIBox/LLMSurvey

SLM

SLM 's basic idea is based on Markov assumption.The SLMs with a fixed context length n are also called n-gram language models.

瓶颈:维度问题,由于指数增长的转换概率需要计算,SLM无法准确估计高位语言模型

衍生:backoff estimation and Good-Tuning estimation, 用于解决数据稀疏的问题

NLM

通过神经网络来表征单词序列的概率问题。开启了用语言模型来做表征建模(representation learning, the beyond is word sequence modeling词序建模)

distributed representation of words
word prediction function conditioned on distributed word vectors
word2vec

PLM

ELMo通过bidirectional LSTM (biLSTM)网络捕获了上下文信息,并可以通过特定的下游任务进行fine-tuning.ELMo简介

BERT可以使用大规模的未标注数据进行特定的预训练任务

LLM

scaling PLMs(scaling model size or data size)

Three differences between PLMs and LLMs:
1.LLMs表现出在更小的PLMs中可能无法观察到的更惊人的能力
2.通过prompting interface来访问LLMs(eg:gpt-4 API)
3.LLMs的发展不需要明确区分以研究或是工程化为目的,LLMs的训练需要大数据处理和并行训练这些更实际的经验。

Backgroud for LLMs

LLMs refers to Transformer language models that contain hundreds of billions (or more) of params, which are trained on massive text data.

Scaling Laws for LLMs

LLMs 可以适配相同结构的transformer 并可以作为小模型的与训练模型

KM scaling law

通过 model size (N), dataset size (D), and the amount of training compute © 三个因素来衡量神经网络模型的表现

The three laws were derived by fitting the model performance with
varied data sizes (22M to 23B tokens), model sizes (768M to 1.5B
non-embedding parameters) and training compute,under some assumptions
(e.g., the analysis of one factor should be not bottlenecked by the
other two factors).

Chinchilla scaling law

.They conducted rigorous experiments by varying a larger range of
model sizes (70M to 16B) and data sizes (5B to 500B tokens) and fitted a similar
scaling law yet with different coefficients

the KM scaling law favors a larger budget allocation in model size
than the data size, while the Chinchilla scaling law argues that the
two sizes should be increased in equal scales

问题:

However, some abilities (e.g., in-context learning) are
unpredictable according to the scaling law, which can be observed only
when the model size exceeds a certain level (as discussed below).

Emergent Abilities of LLMs

emergent abilities of LLMs are formally defined as “the abilities that
are not present in small models but arise in large models”

three typical emergent abilities for LLMs:

In-context learning

https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/129311991
ICT玩法大全

assuming that the language model has been provided with a natural
language instruction and/or several task demonstrations, it can
generate the expected output for the test instances by completing the
word sequence of input text, without requiring additional training or
gradient update

Instruction following

By fine-tuning with a mixture of multi-task datasets formatted via
natural language descriptions (called instruction tuning), LLMs are
shown to perform well on unseen tasks that are also described in the
form of instructions

Step-by-step reasoning

with the chain-of-thought (CoT) prompting strategy, LLMs can solve
such tasks by utilizing the prompting mechanism that involves
intermediate reasoning steps for deriving the final answer

Key Techniques for LLMs

Scaling

larger model/data sizes and more training compute typically lead to an improved model capacity

Training

To support distributed training, several optimization frameworks have been released to facilitate the implementation and deployment of parallel algorithms, such as DeepSpeed and Megatron-LM

Ability eliciting

These abilities might not be explicitly exhibited when LLMs perform some specific tasks.As the technical approach, it is useful to design suitable task instructions or specific in-context learning strategies to elicit such abilities

Alignment tuning

they are likely to generate toxic, biased, or even harmful content for humans. It is necessary to align LLMs with human values
InstructGPT designs an effective tuning approach that enables LLMs to follow the expected instructions, which utilizes the technique of reinforcement learning with human feedback

Tools manipulation

For example, LLMs can utilize the calculator for accurate computation and employ search engines to retrieve unknown information

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/64687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【uniapp】 实现公共弹窗的封装以及调用

图例&#xff1a;红框区域为 “ 内容区域 ” 一、组件 <!-- 弹窗组件 --> <template> <view class"add_popup" v-if"person.isShowPopup"><view class"popup_cont" :style"{width:props.width&&props.width&…

mybatis源码学习-1-调试环境

写在前面,这里会有很多借鉴的内容,有以下三个原因 本博客只是作为本人学习记录并用以分享,并不是专业的技术型博客笔者是位刚刚开始尝试阅读源码的人,对源码的阅读流程乃至整体架构并不熟悉,观看他人博客可以帮助我快速入门如果只是笔者自己观看,难免会有很多弄不懂乃至理解错误…

Spring源码解析-总览

1、前言 Spring源码一直贯穿我们Java的开发中&#xff0c;只要你是一个Java开发人员就一定知道Spring全家桶。Spring全家桶为我们一共一站式服务&#xff0c;IOC、AOP更是Spring显著特性。但是Spring到底怎么为我们提供容器&#xff0c;管理资源的呢&#xff1f;下来&#xff0…

MyBatis 中如何实现分页 ?

1. MyBatis 中如何实现分页 &#xff1f; MyBatis 中的分页有两种实现方式&#xff1a;物理分页 or 逻辑分页 【物理分页】 1.1 原生 SQL 物理分页 物理分页是通过 SQL 查询语句&#xff0c;LIMIT 语法进行分页的&#xff0c;它是在数据库引擎层面实现的。 <select id&…

Ubuntu学习---跟着绍发学linux课程记录(第二部分)

文章目录 7 文件权限7.1 文件的权限7.2 修改文件权限7.3 修改文件的属主 8、可执行脚本8.2Shell脚本8.3python脚本的创建 9Shell9.1Shell中的变量9.2 环境变量9.3用户环境变量 学习链接: Ubuntu 21.04乌班图 Linux使用教程_60集Linux课程 所有资料在 http://afanihao.cn/java …

学生管理系统VueAjax版本

学生管理系统VueAjax版本 使用Vue和Ajax对原有学生管理系统进行优化 1.准备工作 创建AjaxResult类&#xff0c;对Ajax回传的信息封装在对象中 package com.grg.Result;/*** Author Grg* Date 2023/8/30 8:51* PackageName:com.grg.Result* ClassName: AjaxResult* Descript…

Docker进入容器出现bash: vi: command not found

&#x1f388;1 参考文档 docker基础容器中bash: vi: command not found问题解决 | 你邻座的怪同学 &#x1f50d;2 问题描述 在使用 Docker 容器时&#xff0c;有时候里边没有安装vim&#xff0c;敲vim命令时提示说&#xff1a;vim: command not found。 这个时候就需要安装v…

Java抛出异常

当某个方法抛出了异常时&#xff0c;如果当前方法没有捕获异常&#xff0c;异常就会被抛到上层调用方法&#xff0c;直到遇到某个try ... catch被捕获为止 调用printStackTrace()可以打印异常的传播栈&#xff0c;对于调试非常有用&#xff1b;捕获异常并再次抛出新的异常时&am…

项目-IM

tim-server tim-server启动类实现CommandLineRunner接口&#xff0c;重写run()方法 run()方法开启一个线程&#xff0c;创建zk持久父节点&#xff0c;创建临时顺序子节点&#xff0c;将netty-server信息写入 1.1 用户登录 1.2 gateway向认证授权中心请求token 1.3 从zookee…

在windows上安装Cmake软件

Cmake是一个跨语言、跨平台、开源的编译工具&#xff0c;可以编译C、C、Note.js、JavaScript、C#、Java、Python、Php、Object-C、Ruby等工程&#xff0c;需要设置对应的src源码目录、ext第三方依赖目录、CMakeList.txt构建列表&#xff0c;再使用cmake命令即可。     2023年…

程序员自由创业周记#2:前期准备

感恩 上次公开了创业的决定后&#xff0c;得到了很多亲朋好友和陌生朋友的鼓励或支持&#xff0c;以不同的形式&#xff0c;感动之情溢于言表。这些都会记在心里&#xff0c;大恩不言谢~ 创业方向 笔者是一名资质平平的iOS开发程序猿&#xff0c;创业项目也就是开发App卖&am…

Jmeter(二十九):Jmeter常用场景梳理

一、每秒钟固定调用次数 如果想控制每秒发送请求数量,仅仅通过线程数与循环次数是不够的,因为这只能控制发送总数,而要控制每秒发送数量,需要线程数与常数吞吐量控制器的搭配使用,这种场景在性能测试中使用不多。 例如每秒钟调用30次接口,那么把线程数设置为30,将常数…

Netty-ChannelPipeline

EventLoop可以说是 Netty 的调度中心&#xff0c;负责监听多种事件类型&#xff1a;I/O 事件、信号事件、定时事件等&#xff0c;然而实际的业务处理逻辑则是由 ChannelPipeline 中所定义的 ChannelHandler 完成的&#xff0c;ChannelPipeline 和 ChannelHandler应用开发的过程…

高教社杯数模竞赛特辑论文篇-2012年A题:葡萄酒的评价(附获奖论文)

目录 摘 要 一、问题重述 二、问题分析 2.1 问题一的分析 2.2 问题二的分析

SMT制造中的产品质量检验和管理

SMT制造中的质量检验和产品物料管理都是实现高质量、低成本、高效益的重要方法。在SMT加工的过程中&#xff0c;产品质量的检验和质量把控都是重中之重&#xff0c;可以有效的降低产品不良率及返修等造成制造成本升高的风险问题&#xff0c;今天就来跟大家讨论一下SMT制造中我们…

C语言(第三十三天)

3.1.2 画图推演 3.2 举例2&#xff1a;顺序打印一个整数的每一位 输入一个整数m&#xff0c;打印这个按照顺序打印整数的每一位。 比如&#xff1a; 输入&#xff1a;1234 输出&#xff1a;1 2 3 4 输入&#xff1a;520 输出&#xff1a;5 2 0 3.2.1 分析和代码实现 这个题目&a…

数据结构--队列与循环队列

队列 队列是什么&#xff0c;先联想一下队&#xff0c;排队先来的人排前面先出&#xff0c;后来的人排后面后出&#xff1b;队列的性质也一样&#xff0c;先进队列的数据先出&#xff0c;后进队列的后出&#xff1b;就像图一的样子&#xff1a; 图1 如图1&#xff0c;1号元素是…

Harbor查看密码

已经登录过的harbor 查看密码 cat /root/.docker/config.json {"auths": {"172.28.120.140": {"auth": "YWRtaW43QDIwMTg"}}使用base64解码

Router和Route

Router是一个Web框架中的组件&#xff0c;用于处理HTTP请求&#xff0c;并将其路由到相应的处理程序。在不同的Web框架中&#xff0c;Router的实现方式可能会有所不同&#xff0c;但通常都会包括以下几个部分&#xff1a; URL解析器&#xff1a;用于解析HTTP请求中的URL&#x…

CS420 课程笔记 P1 - 游戏逆向课程介绍

文章目录 笔记前言IntroductionPrerequisitesSkills you will learn Additional TopicsComputer ScienceUniversal ProcessDemystifying Computers 笔记前言 文章的标题根据油管自动生成进行分类&#xff0c;方便对应视频进行定位 笔记根据 Guided Hacking 发布的 CS420 课程完…