GPT4+Python近红外光谱数据分析及机器学习与深度学习建模

详情点击链接:GPT4+Python近红外光谱数据分析及机器学习与深度学习建模

第一:GPT4

1、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store

图片

第二:GPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

图片

第三:GPT4助力信息检索与总结分析

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

图片

第四:GPT4助力论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

图片

第五:GPT4助力Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

图片

第六:GPT4助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板

图片

第七:GPT4助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板

7、案例演示:近红外光谱回归拟合建模

图片

第八:GPT4助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分?BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板

7、案例演示:1)近红外光谱回归拟合建模;2)近红外光谱分类识别建模

图片

第九:GPT4助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板

5、案例演示:近红外光谱分类识别建模

图片

第十:GPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板讲解

10、案例演示:近红外光谱回归拟合建模

图片

第十一:GPT4助力遗传算法近红外光谱分析

1、群优化算法

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板

5、案例演示:基于二进制遗传算法的近红外光谱波长筛选

图片

图片

第十二:GPT4助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板

6、案例演示:1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

图片

第十三:GPT4助力Pytorch入门基础

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

图片

第十四:GPT4助力卷积神经网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板

7、案例演示:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于卷积神经网络的近红外光谱模型建立

图片

图片

第十五:GPT4助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

图片

第十六:GPT4助力自编码器近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板

5、案例演示:1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

图片

第十七:GPT4助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板讲解

4、案例演示:基于U-Net的多光谱图像语义分割

图片

第十八:GPT4助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645223.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

postman使用-09发送报告

文章目录 环境部署生成测试报告导出测试集导出环境变量导出全局变量 生成报告演示案例一:单一接口使用环境变量和全局变量案例二:单一接口使用环境变量、全局变量、CSV文件参数案例三:多接口,批量执行 总结 环境部署 1.安装nodej…

CSS文本外观属性(知识点2)

知识引入 1.text-indent:首行缩进 text-indent属性是用于定义首行文本的缩进,其属性值可为不同单位的数值,em字符宽度的倍数或相对于浏览器窗口宽度的百分比%,允许使用负值,建议使用em作为设置单位,下面通…

Docker Image(镜像)

Docker镜像是什么 Docker image 本质上是一个 read-only 只读文件,这个文件包含了文件系统、源码、库文件、依赖、工具等一些运行 application 所必须的文件。我们可以把 Docker image 理解成一个模板, 可以通过这个模板实例化出来很多容器。image 里面…

智能家居20年,从「动手」到「用脑」

【潮汐商业评论/原创】 正在装修新家的Carro最近陷入了纠结之中,“还没想好要怎么装一套完整的智能家居,家里的基装就已经开始了。” 事实上,Carro对智能家居也不了解,并不知道该如何下手,心想“要是能一次性设计好就…

MyBatis详解(1)-- ORM模型

MyBatis详解(1) JDBC的弊端: ORM 模型常见的ORM模型:mybatis和Hibernate的区别 ***优势:mybatis解决问题:优点: MyBatisMyBatis环境搭建项目架构mybatis生命周期 JDBC的弊端: 1.硬编…

jenkins部署过程记录

一、jenkins部署git链接找不到 原因分析: 机器的git环境不是个人git的权限,所以clone不了。Jenkins的master节点部署机器已经部署较多其他的job在跑,如果直接修改机器的git配置,很可能影响到其他的job clone 不了代码&#xff0c…

EI论文复现:考虑冷热运行特性的综合能源系统多时间尺度优化调度程序代码!

适用平台/参考文献:MatlabYalmipCplex; 参考文献:电力系统自动化《含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度》 提出考虑冷热特性的综合能源系统多时间尺度优化调度模型,日前计划中通过多场景描述可再生能源的不确定性…

大数据处理,Pandas与SQL高效读写大型数据集

大家好,使用Pandas和SQL高效地从数据库中读取、处理和写入大型数据集,以实现最佳性能和内存管理,这是十分重要的。 处理大型数据集往往是一项挑战,特别是在涉及到从数据库读取和写入数据时。将整个数据集加载到内存中的传统方法可…

opencv#33 边缘检测

边缘检测原理 图像的每一行每一列都可以看成是一个连续的信号经过离散后得到的数值,例如上图左侧给出的图像由黑色到白色的一个信号,也就是图像中某一行像素变化是由黑色逐渐到白色,我们将其对应在一个坐标轴中,将像素值的大小对应…

Pytorch线性代数

1、加法运算 A torch.arange(20, dtypetorch.float32).reshape(5, 4) B A.clone() # 通过分配新内存,将A的一个副本分配给B A, A B# tensor([[ 0., 1., 2., 3.], # [ 4., 5., 6., 7.], # [ 8., 9., 10., 11.], # [12., 13.,…

鼠标移入/点击子组件,获取选中子组件事件

不管是移入&#xff0c;或者是点击事件 都要知道是触发的哪个组件 这里子组件是个通用小标题title 所以&#xff0c;通过标题内容&#xff0c;获取触发的哪个子组件子组件 <template><div mouseover"tMouseover" mouseleave"tMouseLeave" class&…

SQL 系列教程(二)

目录 SQL DELETE 语句 DELETE 语句 演示数据库 DELETE 实例 删除所有行 SQL TOP, LIMIT, ROWNUM 子句 TOP 子句 演示数据库 SQL TOP、LIMIT 和 ROWNUM 示例 SQL TOP PERCENT 实例 添加WHERE子句 SQL MIN() 和 MAX() 函数 MIN() 和 MAX() 函数 演示数据库 MIN() …

spring eureka集群相关问题

一、集群节点信息如何更新&#xff1f; EurekaServer节点启动的时候&#xff0c;DefaultEurekaServerContext.init()方法调用PeerEurekaNodes.start()方法&#xff0c;start方法中resolvePeerUrls()会从配置文件读取serviceUrl属性值获得集群最新节点信息&#xff0c;通过upda…

电池回收产业东风中,吉利科技集团如何先行一步?

随着绿色低碳可持续发展理念深入人心&#xff0c;全球能源变革和转型升级持续推进&#xff0c;新能源行业不断涌现新的机遇。 动力电池回收和再利用&#xff0c;就是近在眼前的“红利型”产业。 我国新能源汽车市场近年来爆发式增长&#xff0c;动力电池生产紧随电动车普及步…

深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤 就是需要对做直方图均衡化 其中主要分成灰度图以及RGB图的直方图均衡化 这俩的方法和代码不同 想要去看具体原理的朋友可以查看下面这篇博客的内容 写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html) 我们这个场景中会用…

【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言 大家好&#xff0c;这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进&#xff0c;内容持续更新&#xff0c;每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本&#xff0c;同时修改内容也支持ResNet32、ResNet101和PP…

圈子论坛社交实名制系统---H5小程序APP,三端源码交付,允许二开!PHP系统uni书写!

圈子系统是一种社会化网络平台&#xff0c;它的核心是以用户为中心&#xff0c;围绕用户的兴趣、爱好、经历和职业等因素&#xff0c;将具有相同特质的个体聚集起来&#xff0c;形成具有共同话题和兴趣的社交圈子。这样的系统旨在帮助用户拓宽社交范围&#xff0c;提升社交效率…

封装 element el-date-picker时间选择区间

基于el-date-picker 处理满足项目需求。&#xff08;&#xff1a;最多选择7天&#xff09; 效果&#xff1a; 1 大于当前时间的以后日期禁选。2 选中时间的前后七天可选 &#xff08;最多可查询7天数据&#xff09;3 <template><section class"warning-contai…

FPGA硬件架构——具体型号是xc7k325tffg676-2为例

1.共如下图14个时钟域&#xff0c;XmYn(按坐标理解) 2.IOB(IOB为可编程输入输出单元,当然在普通Bank上的IOB附近还有很多时钟资源&#xff0c;例如PLL&#xff0c;MMCM资源。), 2.1 FPGA的Bank分为HP Bank和HR Bank&#xff0c;二者对电压的要求范围不同&#xff0c;HR支持更大…

2023龙信杯wp

打了好像70多分&#xff0c;没拿奖&#xff0c;因为一些众所周知的原因&#xff0c;复盘间隔时间太长了没什么印象了已经 案情简介 2023年9月&#xff0c;某公安机关指挥中心接受害人报案:通过即时通讯工具添加认识一位叫“周微”的女人&#xff0c;两人谈论甚欢&#xff0c;确…