Pytorch线性代数

1、加法运算

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B# tensor([[ 0.,  1.,  2.,  3.],
#          [ 4.,  5.,  6.,  7.],
#          [ 8.,  9., 10., 11.],
#          [12., 13., 14., 15.],
#          [16., 17., 18., 19.]]),#  tensor([[ 0.,  2.,  4.,  6.],
#          [ 8., 10., 12., 14.],
#          [16., 18., 20., 22.],
#          [24., 26., 28., 30.],
#          [32., 34., 36., 38.]])

2、乘法运算

A * B
# tensor([[  0.,   1.,   4.,   9.],
#         [ 16.,  25.,  36.,  49.],
#         [ 64.,  81., 100., 121.],
#         [144., 169., 196., 225.],
#         [256., 289., 324., 361.]])

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。

import torcha = 2
X = torch.arange(24).reshape(2, 3, 4)
print(X)
# tensor([[[ 0,  1,  2,  3],
#          [ 4,  5,  6,  7],
#          [ 8,  9, 10, 11]],#         [[12, 13, 14, 15],
#          [16, 17, 18, 19],
#          [20, 21, 22, 23]]])print((a + X).shape)
# torch.Size([2, 3, 4])print(a + X)
# tensor([[[ 2,  3,  4,  5],
#          [ 6,  7,  8,  9],
#          [10, 11, 12, 13]],#         [[14, 15, 16, 17],
#          [18, 19, 20, 21],
#          [22, 23, 24, 25]]])

3、降维

可以计算任意形状张量的元素和。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.sum())
# tensor(190.)

指定张量沿哪一个轴来通过求和降低维度。

为了通过求和所有行的元素来降维(轴0),可以在调用函数时指定axis=0。 由于输入矩阵沿0轴降维以生成输出向量,因此输入轴0的维数在输出形状中消失。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])A_sum_axis0 = A.sum(axis=0)
print(A_sum_axis0)
# tensor([40., 45., 50., 55.])A_sum_axis0 = A.sum(axis=1)
print(A_sum_axis0)
# tensor([ 6., 22., 38., 54., 70.])

沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.sum(axis=[0, 1]))
# tensor(190.)

平均值通过将总和除以元素总数来计算平均值。 

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.mean())
# tensor(9.5000)print(A.sum() / A.numel())
# tensor(9.5000)

计算平均值的函数也可以沿指定轴降低张量的维度。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.mean(axis=0))
# tensor([ 8.,  9., 10., 11.])print(A.sum(axis=0) / A.shape[0])
# tensor([ 8.,  9., 10., 11.])

4、非降维求和

有时在调用函数来计算总和或均值时保持轴数不变会很有用。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])sum_A = A.sum(axis=1, keepdims=True)print(sum_A)
# tensor([[ 6.],
#         [22.],
#         [38.],
#         [54.],
#         [70.]])

由于sum_A在对每行进行求和后仍保持两个轴,可以通过广播将A除以sum_A

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])sum_A = A.sum(axis=1, keepdims=True)
# tensor([[ 6.],
#         [22.],
#         [38.],
#         [54.],
#         [70.]])print(A / sum_A)
# tensor([[0.0000, 0.1667, 0.3333, 0.5000],
#         [0.1818, 0.2273, 0.2727, 0.3182],
#         [0.2105, 0.2368, 0.2632, 0.2895],
#         [0.2222, 0.2407, 0.2593, 0.2778],
#         [0.2286, 0.2429, 0.2571, 0.2714]])

沿某个轴计算A元素的累积总和, 比如axis=0(按行计算),可以调用cumsum函数。 此函数不会沿任何轴降低输入张量的维度。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.cumsum(axis=0))
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  6.,  8., 10.],
#         [12., 15., 18., 21.],
#         [24., 28., 32., 36.],
#         [40., 45., 50., 55.]])

5、点积

torch.dot(x,y) 点积是两个向量相同位置的按元素乘积的和。

import torchx = torch.arange(4, dtype=torch.float32)
print(x)
# tensor([0., 1., 2., 3.])y = torch.ones(4, dtype = torch.float32)
print(y)
# tensor([1., 1., 1., 1.])print(torch.dot(x, y))
# tensor(6.)

也可以通过执行按元素乘法,然后进行求和来表示两个向量的点积。

import torchx = torch.arange(4, dtype=torch.float32)
print(x)
# tensor([0., 1., 2., 3.])y = torch.ones(4, dtype = torch.float32)
print(y)
# tensor([1., 1., 1., 1.])print(torch.sum(x * y))
# tensor(6.)

6、矩阵-向量积

将矩阵A用它的行向量表示

每个ai⊤都是行向量,表示矩阵的第i行。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])x = torch.arange(4, dtype=torch.float32)
print(x)
# tensor([0., 1., 2., 3.])print(torch.mv(A, x))
# tensor([ 14.,  38.,  62.,  86., 110.])

7、矩阵-矩阵乘法

ai行向量, bj列向量。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])B = torch.ones(4, 3)
print(B)
# tensor([[1., 1., 1.],
#         [1., 1., 1.],
#         [1., 1., 1.],
#         [1., 1., 1.]])print(torch.mm(A, B))
# tensor([[ 6.,  6.,  6.],
#         [22., 22., 22.],
#         [38., 38., 38.],
#         [54., 54., 54.],
#         [70., 70., 70.]])

8、范数

向量的范数是表示一个向量有多大。这里考虑的大小(size)概念不涉及维度,而是分量的大小。

向量范数是将向量映射到标量的函数f。

给定任意向量X,向量范数要满足一些属性。

第一个性质是:如果我们按常数因子a缩放向量的所有元素, 其范数也会按相同常数因子的绝对值缩放:

第二个性质是熟悉的三角不等式:

第三个性质简单地说范数必须是非负的:

L2范数是向量元素平方和的平方根(向量)

import torchu = torch.tensor([3.0, -4.0])
print(torch.norm(u))
# tensor(5.)

L1范数是向量元素的绝对值

import torchu = torch.tensor([3.0, -4.0])
print(torch.abs(u).sum())
# tensor(7.)

Lp一般范数

Frobenius范数是矩阵元素平方和的平方根(矩阵的L2范数)

import torchz = torch.ones((4, 9))
# tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.],
#         [1., 1., 1., 1., 1., 1., 1., 1., 1.],
#         [1., 1., 1., 1., 1., 1., 1., 1., 1.],
#         [1., 1., 1., 1., 1., 1., 1., 1., 1.]])print(torch.norm(z))
# tensor(6.)
# (9*4)^(1/2)

范数和目标

在深度学习中,我们经常试图解决优化问题: 

  • 最大化分配给观测数据的概率; 
  • 最小化预测和真实观测之间的距离。

用向量表示物品(如单词、产品或新闻文章),以便最小化相似项目之间的距离,最大化不同项目之间的距离。

目标是深度学习算法最重要的组成部分(除了数据),通常被表达为范数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645210.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鼠标移入/点击子组件,获取选中子组件事件

不管是移入&#xff0c;或者是点击事件 都要知道是触发的哪个组件 这里子组件是个通用小标题title 所以&#xff0c;通过标题内容&#xff0c;获取触发的哪个子组件子组件 <template><div mouseover"tMouseover" mouseleave"tMouseLeave" class&…

SQL 系列教程(二)

目录 SQL DELETE 语句 DELETE 语句 演示数据库 DELETE 实例 删除所有行 SQL TOP, LIMIT, ROWNUM 子句 TOP 子句 演示数据库 SQL TOP、LIMIT 和 ROWNUM 示例 SQL TOP PERCENT 实例 添加WHERE子句 SQL MIN() 和 MAX() 函数 MIN() 和 MAX() 函数 演示数据库 MIN() …

spring eureka集群相关问题

一、集群节点信息如何更新&#xff1f; EurekaServer节点启动的时候&#xff0c;DefaultEurekaServerContext.init()方法调用PeerEurekaNodes.start()方法&#xff0c;start方法中resolvePeerUrls()会从配置文件读取serviceUrl属性值获得集群最新节点信息&#xff0c;通过upda…

电池回收产业东风中,吉利科技集团如何先行一步?

随着绿色低碳可持续发展理念深入人心&#xff0c;全球能源变革和转型升级持续推进&#xff0c;新能源行业不断涌现新的机遇。 动力电池回收和再利用&#xff0c;就是近在眼前的“红利型”产业。 我国新能源汽车市场近年来爆发式增长&#xff0c;动力电池生产紧随电动车普及步…

深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤 就是需要对做直方图均衡化 其中主要分成灰度图以及RGB图的直方图均衡化 这俩的方法和代码不同 想要去看具体原理的朋友可以查看下面这篇博客的内容 写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html) 我们这个场景中会用…

【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言 大家好&#xff0c;这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进&#xff0c;内容持续更新&#xff0c;每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本&#xff0c;同时修改内容也支持ResNet32、ResNet101和PP…

圈子论坛社交实名制系统---H5小程序APP,三端源码交付,允许二开!PHP系统uni书写!

圈子系统是一种社会化网络平台&#xff0c;它的核心是以用户为中心&#xff0c;围绕用户的兴趣、爱好、经历和职业等因素&#xff0c;将具有相同特质的个体聚集起来&#xff0c;形成具有共同话题和兴趣的社交圈子。这样的系统旨在帮助用户拓宽社交范围&#xff0c;提升社交效率…

封装 element el-date-picker时间选择区间

基于el-date-picker 处理满足项目需求。&#xff08;&#xff1a;最多选择7天&#xff09; 效果&#xff1a; 1 大于当前时间的以后日期禁选。2 选中时间的前后七天可选 &#xff08;最多可查询7天数据&#xff09;3 <template><section class"warning-contai…

FPGA硬件架构——具体型号是xc7k325tffg676-2为例

1.共如下图14个时钟域&#xff0c;XmYn(按坐标理解) 2.IOB(IOB为可编程输入输出单元,当然在普通Bank上的IOB附近还有很多时钟资源&#xff0c;例如PLL&#xff0c;MMCM资源。), 2.1 FPGA的Bank分为HP Bank和HR Bank&#xff0c;二者对电压的要求范围不同&#xff0c;HR支持更大…

2023龙信杯wp

打了好像70多分&#xff0c;没拿奖&#xff0c;因为一些众所周知的原因&#xff0c;复盘间隔时间太长了没什么印象了已经 案情简介 2023年9月&#xff0c;某公安机关指挥中心接受害人报案:通过即时通讯工具添加认识一位叫“周微”的女人&#xff0c;两人谈论甚欢&#xff0c;确…

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者&#xff1a;顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型&#xff08;Large language models,LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有 self-attention 的编码器和解码器组…

HTTP动态代理的原理及其对网络性能的影响

HTTP动态代理是一种通过代理服务器来转发HTTP请求和响应数据的网络技术&#xff0c;它可以优化网络性能、提高网络安全性&#xff0c;并解决跨域请求的问题。本文将详细介绍HTTP动态代理的原理及其对网络性能的影响。 一、HTTP动态代理的原理 HTTP动态代理的基本原理是在客户…

【数据结构四】栈与Stack详解

目录 栈与Stack 1.实现一个自己的栈 2.Stack的基本使用 3.栈的一些oj题训练 4.栈&#xff0c;虚拟机栈&#xff0c;栈帧的区别 栈与Stack 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶…

opencv#34 边缘检测(二)

Laplacian(拉普拉斯)算子 前面介绍的Sobel算子和Scharr算子存在的问题: 1.要分别计算两个方向&#xff08;x,y)的边缘&#xff0c;之后将两方向的边缘进行叠加。 2.边缘与方向相关性较大。当我们通过Sobel算子提取x方向检测时&#xff0c;它所能够检测到的边缘都是一个沿着y…

差分进化算法求解基于移动边缘计算 (MEC) 的无线区块链网络的联合挖矿决策和资源分配(提供MATLAB代码)

一、优化模型介绍 在所研究的区块链网络中&#xff0c;优化的变量为&#xff1a;挖矿决策&#xff08;即 m&#xff09;和资源分配&#xff08;即 p 和 f&#xff09;&#xff0c;目标函数是使所有矿工的总利润最大化。问题可以表述为&#xff1a; max ⁡ m , p , f F miner …

gin中使用限流中间件

限流又称为流量控制&#xff08;流控&#xff09;&#xff0c;通常是指限制到达系统的并发请求数&#xff0c;本文列举了常见的限流策略&#xff0c;并以gin框架为例演示了如何为项目添加限流组件。 限流 限流又称为流量控制&#xff08;流控&#xff09;&#xff0c;通常是指…

如何在美国硅谷高防服务器上运行自定义的脚本和应用程序

在美国硅谷高防服务器上运行自定义的脚本和应用程序需要一定的技术和知识。下面我们将介绍一些关键步骤&#xff0c;帮助您顺利地在这些服务器上运行自定义应用程序和脚本。 确保您有对服务器的访问权限&#xff0c;并且已经通过SSH等方式连接到服务器。接下来&#xff0c;您可…

不就业,纯兴趣,应该自学C#还是JAVA?

不就业&#xff0c;纯兴趣&#xff0c;应该自学C#还是JAVA? 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「JAVA的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff…

微信小程序(十四)分包和分包预加载

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.分包的配置 2.分包预加载的写法 先说说为什么需要分包&#xff1a; 小程序追求小而快&#xff0c;主包的大小控制是小程序上线的硬性要求&#xff0c;分包有利于小程序优化加载速度 分包的注意事项&#xff1a; 单个分…

网络原理-初识(1)

目录 网络发展史 独立模式 网络互连 局域网LAN 广域网WAN 网络通信基础 IP地址 概念 格式 端口 概念 格式 认识协议 概念 作用 五元组 网络发展史 独立模式 独立模式:计算机之间相互独立; 网络互连 随着时代的发展,越来越需要计算机之间相互通信,共享软件和数…