Pytorch线性代数

1、加法运算

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B# tensor([[ 0.,  1.,  2.,  3.],
#          [ 4.,  5.,  6.,  7.],
#          [ 8.,  9., 10., 11.],
#          [12., 13., 14., 15.],
#          [16., 17., 18., 19.]]),#  tensor([[ 0.,  2.,  4.,  6.],
#          [ 8., 10., 12., 14.],
#          [16., 18., 20., 22.],
#          [24., 26., 28., 30.],
#          [32., 34., 36., 38.]])

2、乘法运算

A * B
# tensor([[  0.,   1.,   4.,   9.],
#         [ 16.,  25.,  36.,  49.],
#         [ 64.,  81., 100., 121.],
#         [144., 169., 196., 225.],
#         [256., 289., 324., 361.]])

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。

import torcha = 2
X = torch.arange(24).reshape(2, 3, 4)
print(X)
# tensor([[[ 0,  1,  2,  3],
#          [ 4,  5,  6,  7],
#          [ 8,  9, 10, 11]],#         [[12, 13, 14, 15],
#          [16, 17, 18, 19],
#          [20, 21, 22, 23]]])print((a + X).shape)
# torch.Size([2, 3, 4])print(a + X)
# tensor([[[ 2,  3,  4,  5],
#          [ 6,  7,  8,  9],
#          [10, 11, 12, 13]],#         [[14, 15, 16, 17],
#          [18, 19, 20, 21],
#          [22, 23, 24, 25]]])

3、降维

可以计算任意形状张量的元素和。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.sum())
# tensor(190.)

指定张量沿哪一个轴来通过求和降低维度。

为了通过求和所有行的元素来降维(轴0),可以在调用函数时指定axis=0。 由于输入矩阵沿0轴降维以生成输出向量,因此输入轴0的维数在输出形状中消失。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])A_sum_axis0 = A.sum(axis=0)
print(A_sum_axis0)
# tensor([40., 45., 50., 55.])A_sum_axis0 = A.sum(axis=1)
print(A_sum_axis0)
# tensor([ 6., 22., 38., 54., 70.])

沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.sum(axis=[0, 1]))
# tensor(190.)

平均值通过将总和除以元素总数来计算平均值。 

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.mean())
# tensor(9.5000)print(A.sum() / A.numel())
# tensor(9.5000)

计算平均值的函数也可以沿指定轴降低张量的维度。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.mean(axis=0))
# tensor([ 8.,  9., 10., 11.])print(A.sum(axis=0) / A.shape[0])
# tensor([ 8.,  9., 10., 11.])

4、非降维求和

有时在调用函数来计算总和或均值时保持轴数不变会很有用。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])sum_A = A.sum(axis=1, keepdims=True)print(sum_A)
# tensor([[ 6.],
#         [22.],
#         [38.],
#         [54.],
#         [70.]])

由于sum_A在对每行进行求和后仍保持两个轴,可以通过广播将A除以sum_A

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])sum_A = A.sum(axis=1, keepdims=True)
# tensor([[ 6.],
#         [22.],
#         [38.],
#         [54.],
#         [70.]])print(A / sum_A)
# tensor([[0.0000, 0.1667, 0.3333, 0.5000],
#         [0.1818, 0.2273, 0.2727, 0.3182],
#         [0.2105, 0.2368, 0.2632, 0.2895],
#         [0.2222, 0.2407, 0.2593, 0.2778],
#         [0.2286, 0.2429, 0.2571, 0.2714]])

沿某个轴计算A元素的累积总和, 比如axis=0(按行计算),可以调用cumsum函数。 此函数不会沿任何轴降低输入张量的维度。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])print(A.cumsum(axis=0))
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  6.,  8., 10.],
#         [12., 15., 18., 21.],
#         [24., 28., 32., 36.],
#         [40., 45., 50., 55.]])

5、点积

torch.dot(x,y) 点积是两个向量相同位置的按元素乘积的和。

import torchx = torch.arange(4, dtype=torch.float32)
print(x)
# tensor([0., 1., 2., 3.])y = torch.ones(4, dtype = torch.float32)
print(y)
# tensor([1., 1., 1., 1.])print(torch.dot(x, y))
# tensor(6.)

也可以通过执行按元素乘法,然后进行求和来表示两个向量的点积。

import torchx = torch.arange(4, dtype=torch.float32)
print(x)
# tensor([0., 1., 2., 3.])y = torch.ones(4, dtype = torch.float32)
print(y)
# tensor([1., 1., 1., 1.])print(torch.sum(x * y))
# tensor(6.)

6、矩阵-向量积

将矩阵A用它的行向量表示

每个ai⊤都是行向量,表示矩阵的第i行。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])x = torch.arange(4, dtype=torch.float32)
print(x)
# tensor([0., 1., 2., 3.])print(torch.mv(A, x))
# tensor([ 14.,  38.,  62.,  86., 110.])

7、矩阵-矩阵乘法

ai行向量, bj列向量。

import torchA = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])B = torch.ones(4, 3)
print(B)
# tensor([[1., 1., 1.],
#         [1., 1., 1.],
#         [1., 1., 1.],
#         [1., 1., 1.]])print(torch.mm(A, B))
# tensor([[ 6.,  6.,  6.],
#         [22., 22., 22.],
#         [38., 38., 38.],
#         [54., 54., 54.],
#         [70., 70., 70.]])

8、范数

向量的范数是表示一个向量有多大。这里考虑的大小(size)概念不涉及维度,而是分量的大小。

向量范数是将向量映射到标量的函数f。

给定任意向量X,向量范数要满足一些属性。

第一个性质是:如果我们按常数因子a缩放向量的所有元素, 其范数也会按相同常数因子的绝对值缩放:

第二个性质是熟悉的三角不等式:

第三个性质简单地说范数必须是非负的:

L2范数是向量元素平方和的平方根(向量)

import torchu = torch.tensor([3.0, -4.0])
print(torch.norm(u))
# tensor(5.)

L1范数是向量元素的绝对值

import torchu = torch.tensor([3.0, -4.0])
print(torch.abs(u).sum())
# tensor(7.)

Lp一般范数

Frobenius范数是矩阵元素平方和的平方根(矩阵的L2范数)

import torchz = torch.ones((4, 9))
# tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.],
#         [1., 1., 1., 1., 1., 1., 1., 1., 1.],
#         [1., 1., 1., 1., 1., 1., 1., 1., 1.],
#         [1., 1., 1., 1., 1., 1., 1., 1., 1.]])print(torch.norm(z))
# tensor(6.)
# (9*4)^(1/2)

范数和目标

在深度学习中,我们经常试图解决优化问题: 

  • 最大化分配给观测数据的概率; 
  • 最小化预测和真实观测之间的距离。

用向量表示物品(如单词、产品或新闻文章),以便最小化相似项目之间的距离,最大化不同项目之间的距离。

目标是深度学习算法最重要的组成部分(除了数据),通常被表达为范数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645210.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux系统创建并自动启用交换文件

在Linux系统中,交换空间(Swap Space)被用作当物理内存(RAM)不足时的额外内存。尽管现代计算机通常配备有大量的RAM,但在某些情况下,如运行内存密集型应用或程序时,交换空间仍然非常有…

鼠标移入/点击子组件,获取选中子组件事件

不管是移入&#xff0c;或者是点击事件 都要知道是触发的哪个组件 这里子组件是个通用小标题title 所以&#xff0c;通过标题内容&#xff0c;获取触发的哪个子组件子组件 <template><div mouseover"tMouseover" mouseleave"tMouseLeave" class&…

[AIGC大数据基础] Spark 入门

大数据处理已成为当代数据领域的重要课题之一。为了高效地处理和分析大规模数据集&#xff0c;许多大数据处理引擎应运而生。其中&#xff0c;Spark作为一个快速、通用的大数据处理引擎备受关注。 本文将从“是什么、怎么用、为什么用”三个角度来介绍Spark。首先&#xff0c;我…

【Flutter跨平台插件开发】如何实现kotlin跟C++的相互调用

【Flutter跨平台插件开发】如何实现kotlin跟C的相互调用 kotlin 调 c 在 Kotlin 中&#xff0c;可以使用 JNI (Java Native Interface) 来调用 C 代码 调用步骤: 创建 C 文件并实现函数。 // example.cpp #include <jni.h>extern "C" JNIEXPORT jstring J…

SQL 系列教程(二)

目录 SQL DELETE 语句 DELETE 语句 演示数据库 DELETE 实例 删除所有行 SQL TOP, LIMIT, ROWNUM 子句 TOP 子句 演示数据库 SQL TOP、LIMIT 和 ROWNUM 示例 SQL TOP PERCENT 实例 添加WHERE子句 SQL MIN() 和 MAX() 函数 MIN() 和 MAX() 函数 演示数据库 MIN() …

spring eureka集群相关问题

一、集群节点信息如何更新&#xff1f; EurekaServer节点启动的时候&#xff0c;DefaultEurekaServerContext.init()方法调用PeerEurekaNodes.start()方法&#xff0c;start方法中resolvePeerUrls()会从配置文件读取serviceUrl属性值获得集群最新节点信息&#xff0c;通过upda…

电池回收产业东风中,吉利科技集团如何先行一步?

随着绿色低碳可持续发展理念深入人心&#xff0c;全球能源变革和转型升级持续推进&#xff0c;新能源行业不断涌现新的机遇。 动力电池回收和再利用&#xff0c;就是近在眼前的“红利型”产业。 我国新能源汽车市场近年来爆发式增长&#xff0c;动力电池生产紧随电动车普及步…

【代码管理】TortoiseGit 图标没有显示

当TortoiseGit在Windows系统中没有正确显示文件和目录的图标状态时&#xff0c;可能的原因和解决方法如下&#xff1a; 原因与解决方案&#xff1a; TortoiseGit未集成到资源管理器&#xff1a; 请确保TortoiseGit已正确安装&#xff0c;并在安装过程中选择了“将TortoiseGit集…

C++区间覆盖(贪心算法)

假设有n个区间&#xff0c;分别是&#xff1a;[l1,r1], [l2,r2], [l3,r3].....[ln,rn] 从这n个区间中选出某些区间&#xff0c;要求这些区间满足两两不相交&#xff0c;最多能选出多少个区间呢&#xff1f; 基本思路&#xff1a; 按照右端点从小到大排序&#xff0c;再比较左端…

深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤 就是需要对做直方图均衡化 其中主要分成灰度图以及RGB图的直方图均衡化 这俩的方法和代码不同 想要去看具体原理的朋友可以查看下面这篇博客的内容 写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html) 我们这个场景中会用…

【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言 大家好&#xff0c;这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进&#xff0c;内容持续更新&#xff0c;每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本&#xff0c;同时修改内容也支持ResNet32、ResNet101和PP…

Google murmur3 hashString用法

如下为将String获取hashcode&#xff0c;转为Long的方法&#xff0c;主要是在海量数据的flink程序里&#xff0c;为了节省状态的存储空间&#xff0c;所以尝试用long来存储。 同样的还可以hash其他格式的数据。 评估了下&#xff0c;murmur3最高用的是128位的hash值&#xff…

圈子论坛社交实名制系统---H5小程序APP,三端源码交付,允许二开!PHP系统uni书写!

圈子系统是一种社会化网络平台&#xff0c;它的核心是以用户为中心&#xff0c;围绕用户的兴趣、爱好、经历和职业等因素&#xff0c;将具有相同特质的个体聚集起来&#xff0c;形成具有共同话题和兴趣的社交圈子。这样的系统旨在帮助用户拓宽社交范围&#xff0c;提升社交效率…

uniapp+vue开发微信小程序,image标签图片IOS可以正常回显,安卓回显不出

仅代表个人遇到的问题&#xff0c;仅代表个人遇到的问题&#xff0c;仅代表个人遇到的问题&#xff0c; 1.先说最快的解决方案&#xff0c;直接在src下面额外添加一段url&#xff0c;https://images.weserv.nl/?url&#xff0c; <imagestyle"width: 180rpx; height: 2…

封装 element el-date-picker时间选择区间

基于el-date-picker 处理满足项目需求。&#xff08;&#xff1a;最多选择7天&#xff09; 效果&#xff1a; 1 大于当前时间的以后日期禁选。2 选中时间的前后七天可选 &#xff08;最多可查询7天数据&#xff09;3 <template><section class"warning-contai…

FPGA硬件架构——具体型号是xc7k325tffg676-2为例

1.共如下图14个时钟域&#xff0c;XmYn(按坐标理解) 2.IOB(IOB为可编程输入输出单元,当然在普通Bank上的IOB附近还有很多时钟资源&#xff0c;例如PLL&#xff0c;MMCM资源。), 2.1 FPGA的Bank分为HP Bank和HR Bank&#xff0c;二者对电压的要求范围不同&#xff0c;HR支持更大…

Spark 的宽依赖和窄依赖

Apache Spark 中的依赖关系指的是转换操作&#xff08;transformations&#xff09;之间的依赖类型。这些依赖关系决定了任务是如何在集群上分布执行的。依赖关系分为两类&#xff1a;宽依赖&#xff08;Wide Dependency&#xff09;和窄依赖&#xff08;Narrow Dependency&…

orchestrator介绍3.2 命令行之orchestrator-client

orchestrator-client 是一个包装 API 调用的脚本&#xff0c;使用起来更方便。 它可以自动确定orchestrator的Leader角色&#xff0c;并在这种情况下将所有请求转发给Leader。 有了orchestrator-client&#xff1a; 不需要到处安装orchestrator的二进制文件&#xff1b;仅在…

2023龙信杯wp

打了好像70多分&#xff0c;没拿奖&#xff0c;因为一些众所周知的原因&#xff0c;复盘间隔时间太长了没什么印象了已经 案情简介 2023年9月&#xff0c;某公安机关指挥中心接受害人报案:通过即时通讯工具添加认识一位叫“周微”的女人&#xff0c;两人谈论甚欢&#xff0c;确…

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者&#xff1a;顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型&#xff08;Large language models,LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有 self-attention 的编码器和解码器组…