深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤
就是需要对做直方图均衡化
其中主要分成灰度图以及RGB图的直方图均衡化
这俩的方法和代码不同
想要去看具体原理的朋友可以查看下面这篇博客的内容
写的很详细
颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html)

我们这个场景中会用到的就是颜色直方图均衡化了
其中包含三种方法


方法1.在BGR颜色空间下进行直方图均衡化,可以分别对每个通道进行均衡化。

以下是批量读取某个文件夹中的所有图片,并对每张图片做RGB直方图均衡化,使用OpenCV库实现彩色图像直方图均衡化(在BGR颜色空间)的代码:

import cv2
import os
import shutilfilePath = r"F:\deepl\sample\complete\road3\white"  # 用于获取文件名称列表
new_path = r"F:\deepl\sample\complete\road3\white-rgb"  # 目标文件夹
#move_path = r"F:\deepl\sample\complete\water2\sat"  # 目标文件夹file_names = filter(lambda x: x.find('png')!=-1, os.listdir(filePath))# print(file_list)for file in file_names:
# 读取彩色图像path=filePath+'\\'+fileimg = cv2.imread(path)# 分离BGR图像的通道b, g, r = cv2.split(img)# 对每个通道进行直方图均衡化equ_b = cv2.equalizeHist(b)equ_g = cv2.equalizeHist(g)equ_r = cv2.equalizeHist(r)equ_img = cv2.merge((equ_b, equ_g, equ_r))#合并均衡化后的通道# 显示均衡化前后的彩色图像path2=new_path+'\\'+filecv2.imwrite(path2, equ_img)
#cv2.imshow('Original Image', img)
#cv2.imshow('Equalized Image', equ_img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

做均衡化前后的图片如下所示:

但是,由于我的图片中有些图片存在大面积白色,因此均衡之后颜色就变成了这样:

很明显,由于白色区域的影响,这个结果明显是不对的,想了各种办法:

1、比如用PS把白色区域删掉,保存成png透明背景的再跑上面的代码,结果不对

2、用PS把上面的白色区域先变成灰色,再跑,结果也还是不对

总结原因:是因为我们上面的代码是做全局直方图均衡化,并不是局部的,因此即使是透明背景,结果做出来也不对

而且为了只让我选定的区域做直方图均衡化,其他区域不变

就需要用到下面的方法

基于掩模的特定区域直方图均衡化

这里也是参考了这位博主的文章

但这里他是对灰度图像做的,我们要做的是RGB影像

因此我对代码进行了修改,可以对RGB进行基于掩模的特定区域颜色直方图均衡化

话不多说

直接看代码

import cv2
import os
import numpy as npfilePath = r"F:\deepl\sample\complete\road3\white"  # 用于获取文件名称列表
new_path = r"F:\deepl\sample\complete\road3\white-rgb"  # 目标文件夹
mask_path = r"F:\deepl\sample\complete\road3\white-mask"  # 目标文件夹
#move_path = r"F:\deepl\sample\complete\water2\sat"  # 目标文件夹file_names = filter(lambda x: x.find('png')!=-1, os.listdir(filePath))# print(file_list)for file in file_names:
# 读取彩色图像path=filePath+'\\'+filemask_path=mask_path+'\\'+fileimg = cv2.imread(path)# 分离BGR图像的通道b, g, r = cv2.split(img)mask = cv2.imread(mask_path, 0)coord = np.where(mask == 255)print(coord)b_mask = b[coord]g_mask = g[coord]r_mask = r[coord]# 对每个通道进行直方图均衡化equ_b = cv2.equalizeHist(b_mask)equ_g = cv2.equalizeHist(g_mask)equ_r = cv2.equalizeHist(r_mask)equ_img = cv2.merge((equ_b, equ_g, equ_r))#合并均衡化后的通道img2 = img.copy()for i, C in enumerate(zip(coord[0], coord[1])):img2[C[0], C[1]] = equ_img[i][0]# 显示均衡化前后的彩色图像path2=new_path+'\\'+filecv2.imwrite(path2, img2)
#cv2.imshow('Original Image', img)
#cv2.imshow('Equalized Image', equ_img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

上面3张图分别是RGB原图,黑白掩模,均衡化后的结果

这下可以看出,我们只对其中一部分指定区域做了均衡化

成功!

但是如何批量化跑呢?

我想要让程序自动从文件夹中读取图片,自动将白色和非白色区域生成掩模,然后自动读取后制作均衡化后的结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645200.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言 大家好,这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PP…

Google murmur3 hashString用法

如下为将String获取hashcode,转为Long的方法,主要是在海量数据的flink程序里,为了节省状态的存储空间,所以尝试用long来存储。 同样的还可以hash其他格式的数据。 评估了下,murmur3最高用的是128位的hash值&#xff…

圈子论坛社交实名制系统---H5小程序APP,三端源码交付,允许二开!PHP系统uni书写!

圈子系统是一种社会化网络平台,它的核心是以用户为中心,围绕用户的兴趣、爱好、经历和职业等因素,将具有相同特质的个体聚集起来,形成具有共同话题和兴趣的社交圈子。这样的系统旨在帮助用户拓宽社交范围,提升社交效率…

uniapp+vue开发微信小程序,image标签图片IOS可以正常回显,安卓回显不出

仅代表个人遇到的问题&#xff0c;仅代表个人遇到的问题&#xff0c;仅代表个人遇到的问题&#xff0c; 1.先说最快的解决方案&#xff0c;直接在src下面额外添加一段url&#xff0c;https://images.weserv.nl/?url&#xff0c; <imagestyle"width: 180rpx; height: 2…

封装 element el-date-picker时间选择区间

基于el-date-picker 处理满足项目需求。&#xff08;&#xff1a;最多选择7天&#xff09; 效果&#xff1a; 1 大于当前时间的以后日期禁选。2 选中时间的前后七天可选 &#xff08;最多可查询7天数据&#xff09;3 <template><section class"warning-contai…

FPGA硬件架构——具体型号是xc7k325tffg676-2为例

1.共如下图14个时钟域&#xff0c;XmYn(按坐标理解) 2.IOB(IOB为可编程输入输出单元,当然在普通Bank上的IOB附近还有很多时钟资源&#xff0c;例如PLL&#xff0c;MMCM资源。), 2.1 FPGA的Bank分为HP Bank和HR Bank&#xff0c;二者对电压的要求范围不同&#xff0c;HR支持更大…

Spark 的宽依赖和窄依赖

Apache Spark 中的依赖关系指的是转换操作&#xff08;transformations&#xff09;之间的依赖类型。这些依赖关系决定了任务是如何在集群上分布执行的。依赖关系分为两类&#xff1a;宽依赖&#xff08;Wide Dependency&#xff09;和窄依赖&#xff08;Narrow Dependency&…

orchestrator介绍3.2 命令行之orchestrator-client

orchestrator-client 是一个包装 API 调用的脚本&#xff0c;使用起来更方便。 它可以自动确定orchestrator的Leader角色&#xff0c;并在这种情况下将所有请求转发给Leader。 有了orchestrator-client&#xff1a; 不需要到处安装orchestrator的二进制文件&#xff1b;仅在…

2023龙信杯wp

打了好像70多分&#xff0c;没拿奖&#xff0c;因为一些众所周知的原因&#xff0c;复盘间隔时间太长了没什么印象了已经 案情简介 2023年9月&#xff0c;某公安机关指挥中心接受害人报案:通过即时通讯工具添加认识一位叫“周微”的女人&#xff0c;两人谈论甚欢&#xff0c;确…

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者&#xff1a;顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型&#xff08;Large language models,LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有 self-attention 的编码器和解码器组…

自然语言处理(NLP)的发展

自然语言处理的发展 随着深度学习和大数据技术的进步&#xff0c;自然语言处理取得了显著的进步。人们正在研究如何使计算机更好地理解和生成人类语言&#xff0c;以及如何应用NLP技术改善搜索引擎、语音助手、机器翻译等领域。 方向一&#xff1a;技术进步 自然语言处理&…

【算法专题】动态规划之简单多状态 dp 问题

动态规划3.0 动态规划 - - - 简单多状态 dp 问题1. 按摩师(打家劫舍Ⅰ的变形)2. 打家劫舍Ⅱ3. 删除并获得点数4. 粉刷房子5. 买卖股票的最佳时机含冷冻期6. 买卖股票的最佳时机含手续费7. 买卖股票的最佳时机Ⅲ8. 买卖股票的最佳时机Ⅳ 动态规划 - - - 简单多状态 dp 问题 1. …

【Java 设计模式】行为型之备忘录模式

文章目录 1. 定义2. 应用场景3. 代码实现结语 备忘录模式&#xff08;Memento Pattern&#xff09;是一种行为型设计模式&#xff0c;用于捕获一个对象的内部状态&#xff0c;以便稍后可以将该对象恢复到此状态。备忘录模式允许在不破坏封装性的前提下捕获和外部化对象的内部状…

Could not autowire. No beans of ‘RedisConnectionFactory‘ type found.已解决

springboot2.7.8 redis3.2.100 在springboot中 使用RedisConnectionFactory 出现这样的错误Could not autowire. No beans of ‘RedisConnectionFactory‘ type found. 只需要在pom.xml中加入 <!-- 整合redis --> <dependency> <groupId>org.springf…

客户端请求+返回 服务端之间的请求和返回 实现rpc通信

背景&#xff1a; 1.无论什么类型的游戏&#xff0c;我们都会有rpc通信的需求。 2.由于客户端直连的是游戏服&#xff0c;如果工会&#xff0c;匹配之类的服务是单独的服务的话&#xff0c;必然要进行游戏服到业务服之间的转发&#xff0c;我们是否需要再转发时单独定义Req和Re…

Halcon基于透视形变的模板匹配

Halcon基于透视形变的模板匹配 透视形变也是一种形变&#xff0c;属于形状模板匹配的延伸。形状模板匹配对于形变非常敏感&#xff0c;而透视形变匹配则能适应出现透视形变的情况。透视形变的匹配又分为无标定和有标定两种情况。基于透视形变的匹配步骤如下。 &#xff08;1&a…

HTTP动态代理的原理及其对网络性能的影响

HTTP动态代理是一种通过代理服务器来转发HTTP请求和响应数据的网络技术&#xff0c;它可以优化网络性能、提高网络安全性&#xff0c;并解决跨域请求的问题。本文将详细介绍HTTP动态代理的原理及其对网络性能的影响。 一、HTTP动态代理的原理 HTTP动态代理的基本原理是在客户…

【数据结构四】栈与Stack详解

目录 栈与Stack 1.实现一个自己的栈 2.Stack的基本使用 3.栈的一些oj题训练 4.栈&#xff0c;虚拟机栈&#xff0c;栈帧的区别 栈与Stack 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶…

opencv#34 边缘检测(二)

Laplacian(拉普拉斯)算子 前面介绍的Sobel算子和Scharr算子存在的问题: 1.要分别计算两个方向&#xff08;x,y)的边缘&#xff0c;之后将两方向的边缘进行叠加。 2.边缘与方向相关性较大。当我们通过Sobel算子提取x方向检测时&#xff0c;它所能够检测到的边缘都是一个沿着y…

大数据分析组件Hive-集合数据结构

Hive的数据结构 前言一、array数组类型二、map键值对集合类型三、struct结构体类型 前言 Hive是一个基于Hadoop的数据仓库基础设施&#xff0c;用于处理大规模分布式数据集。它提供了一个类似于SQL的查询语言&#xff08;称为HiveQL&#xff09;&#xff0c;允许用户以类似于关…