深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤
就是需要对做直方图均衡化
其中主要分成灰度图以及RGB图的直方图均衡化
这俩的方法和代码不同
想要去看具体原理的朋友可以查看下面这篇博客的内容
写的很详细
颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html)

我们这个场景中会用到的就是颜色直方图均衡化了
其中包含三种方法


方法1.在BGR颜色空间下进行直方图均衡化,可以分别对每个通道进行均衡化。

以下是批量读取某个文件夹中的所有图片,并对每张图片做RGB直方图均衡化,使用OpenCV库实现彩色图像直方图均衡化(在BGR颜色空间)的代码:

import cv2
import os
import shutilfilePath = r"F:\deepl\sample\complete\road3\white"  # 用于获取文件名称列表
new_path = r"F:\deepl\sample\complete\road3\white-rgb"  # 目标文件夹
#move_path = r"F:\deepl\sample\complete\water2\sat"  # 目标文件夹file_names = filter(lambda x: x.find('png')!=-1, os.listdir(filePath))# print(file_list)for file in file_names:
# 读取彩色图像path=filePath+'\\'+fileimg = cv2.imread(path)# 分离BGR图像的通道b, g, r = cv2.split(img)# 对每个通道进行直方图均衡化equ_b = cv2.equalizeHist(b)equ_g = cv2.equalizeHist(g)equ_r = cv2.equalizeHist(r)equ_img = cv2.merge((equ_b, equ_g, equ_r))#合并均衡化后的通道# 显示均衡化前后的彩色图像path2=new_path+'\\'+filecv2.imwrite(path2, equ_img)
#cv2.imshow('Original Image', img)
#cv2.imshow('Equalized Image', equ_img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

做均衡化前后的图片如下所示:

但是,由于我的图片中有些图片存在大面积白色,因此均衡之后颜色就变成了这样:

很明显,由于白色区域的影响,这个结果明显是不对的,想了各种办法:

1、比如用PS把白色区域删掉,保存成png透明背景的再跑上面的代码,结果不对

2、用PS把上面的白色区域先变成灰色,再跑,结果也还是不对

总结原因:是因为我们上面的代码是做全局直方图均衡化,并不是局部的,因此即使是透明背景,结果做出来也不对

而且为了只让我选定的区域做直方图均衡化,其他区域不变

就需要用到下面的方法

基于掩模的特定区域直方图均衡化

这里也是参考了这位博主的文章

但这里他是对灰度图像做的,我们要做的是RGB影像

因此我对代码进行了修改,可以对RGB进行基于掩模的特定区域颜色直方图均衡化

话不多说

直接看代码

import cv2
import os
import numpy as npfilePath = r"F:\deepl\sample\complete\road3\white"  # 用于获取文件名称列表
new_path = r"F:\deepl\sample\complete\road3\white-rgb"  # 目标文件夹
mask_path = r"F:\deepl\sample\complete\road3\white-mask"  # 目标文件夹
#move_path = r"F:\deepl\sample\complete\water2\sat"  # 目标文件夹file_names = filter(lambda x: x.find('png')!=-1, os.listdir(filePath))# print(file_list)for file in file_names:
# 读取彩色图像path=filePath+'\\'+filemask_path=mask_path+'\\'+fileimg = cv2.imread(path)# 分离BGR图像的通道b, g, r = cv2.split(img)mask = cv2.imread(mask_path, 0)coord = np.where(mask == 255)print(coord)b_mask = b[coord]g_mask = g[coord]r_mask = r[coord]# 对每个通道进行直方图均衡化equ_b = cv2.equalizeHist(b_mask)equ_g = cv2.equalizeHist(g_mask)equ_r = cv2.equalizeHist(r_mask)equ_img = cv2.merge((equ_b, equ_g, equ_r))#合并均衡化后的通道img2 = img.copy()for i, C in enumerate(zip(coord[0], coord[1])):img2[C[0], C[1]] = equ_img[i][0]# 显示均衡化前后的彩色图像path2=new_path+'\\'+filecv2.imwrite(path2, img2)
#cv2.imshow('Original Image', img)
#cv2.imshow('Equalized Image', equ_img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

上面3张图分别是RGB原图,黑白掩模,均衡化后的结果

这下可以看出,我们只对其中一部分指定区域做了均衡化

成功!

但是如何批量化跑呢?

我想要让程序自动从文件夹中读取图片,自动将白色和非白色区域生成掩模,然后自动读取后制作均衡化后的结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645200.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言 大家好,这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PP…

圈子论坛社交实名制系统---H5小程序APP,三端源码交付,允许二开!PHP系统uni书写!

圈子系统是一种社会化网络平台,它的核心是以用户为中心,围绕用户的兴趣、爱好、经历和职业等因素,将具有相同特质的个体聚集起来,形成具有共同话题和兴趣的社交圈子。这样的系统旨在帮助用户拓宽社交范围,提升社交效率…

封装 element el-date-picker时间选择区间

基于el-date-picker 处理满足项目需求。&#xff08;&#xff1a;最多选择7天&#xff09; 效果&#xff1a; 1 大于当前时间的以后日期禁选。2 选中时间的前后七天可选 &#xff08;最多可查询7天数据&#xff09;3 <template><section class"warning-contai…

FPGA硬件架构——具体型号是xc7k325tffg676-2为例

1.共如下图14个时钟域&#xff0c;XmYn(按坐标理解) 2.IOB(IOB为可编程输入输出单元,当然在普通Bank上的IOB附近还有很多时钟资源&#xff0c;例如PLL&#xff0c;MMCM资源。), 2.1 FPGA的Bank分为HP Bank和HR Bank&#xff0c;二者对电压的要求范围不同&#xff0c;HR支持更大…

2023龙信杯wp

打了好像70多分&#xff0c;没拿奖&#xff0c;因为一些众所周知的原因&#xff0c;复盘间隔时间太长了没什么印象了已经 案情简介 2023年9月&#xff0c;某公安机关指挥中心接受害人报案:通过即时通讯工具添加认识一位叫“周微”的女人&#xff0c;两人谈论甚欢&#xff0c;确…

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者&#xff1a;顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型&#xff08;Large language models,LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有 self-attention 的编码器和解码器组…

HTTP动态代理的原理及其对网络性能的影响

HTTP动态代理是一种通过代理服务器来转发HTTP请求和响应数据的网络技术&#xff0c;它可以优化网络性能、提高网络安全性&#xff0c;并解决跨域请求的问题。本文将详细介绍HTTP动态代理的原理及其对网络性能的影响。 一、HTTP动态代理的原理 HTTP动态代理的基本原理是在客户…

【数据结构四】栈与Stack详解

目录 栈与Stack 1.实现一个自己的栈 2.Stack的基本使用 3.栈的一些oj题训练 4.栈&#xff0c;虚拟机栈&#xff0c;栈帧的区别 栈与Stack 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶…

opencv#34 边缘检测(二)

Laplacian(拉普拉斯)算子 前面介绍的Sobel算子和Scharr算子存在的问题: 1.要分别计算两个方向&#xff08;x,y)的边缘&#xff0c;之后将两方向的边缘进行叠加。 2.边缘与方向相关性较大。当我们通过Sobel算子提取x方向检测时&#xff0c;它所能够检测到的边缘都是一个沿着y…

差分进化算法求解基于移动边缘计算 (MEC) 的无线区块链网络的联合挖矿决策和资源分配(提供MATLAB代码)

一、优化模型介绍 在所研究的区块链网络中&#xff0c;优化的变量为&#xff1a;挖矿决策&#xff08;即 m&#xff09;和资源分配&#xff08;即 p 和 f&#xff09;&#xff0c;目标函数是使所有矿工的总利润最大化。问题可以表述为&#xff1a; max ⁡ m , p , f F miner …

gin中使用限流中间件

限流又称为流量控制&#xff08;流控&#xff09;&#xff0c;通常是指限制到达系统的并发请求数&#xff0c;本文列举了常见的限流策略&#xff0c;并以gin框架为例演示了如何为项目添加限流组件。 限流 限流又称为流量控制&#xff08;流控&#xff09;&#xff0c;通常是指…

如何在美国硅谷高防服务器上运行自定义的脚本和应用程序

在美国硅谷高防服务器上运行自定义的脚本和应用程序需要一定的技术和知识。下面我们将介绍一些关键步骤&#xff0c;帮助您顺利地在这些服务器上运行自定义应用程序和脚本。 确保您有对服务器的访问权限&#xff0c;并且已经通过SSH等方式连接到服务器。接下来&#xff0c;您可…

不就业,纯兴趣,应该自学C#还是JAVA?

不就业&#xff0c;纯兴趣&#xff0c;应该自学C#还是JAVA? 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「JAVA的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff…

微信小程序(十四)分包和分包预加载

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.分包的配置 2.分包预加载的写法 先说说为什么需要分包&#xff1a; 小程序追求小而快&#xff0c;主包的大小控制是小程序上线的硬性要求&#xff0c;分包有利于小程序优化加载速度 分包的注意事项&#xff1a; 单个分…

网络原理-初识(1)

目录 网络发展史 独立模式 网络互连 局域网LAN 广域网WAN 网络通信基础 IP地址 概念 格式 端口 概念 格式 认识协议 概念 作用 五元组 网络发展史 独立模式 独立模式:计算机之间相互独立; 网络互连 随着时代的发展,越来越需要计算机之间相互通信,共享软件和数…

【AI的未来 - AI Agent系列】【MetaGPT】6. 用ActionNode重写技术文档助手

文章目录 0. 前置推荐阅读1. 重写WriteDirectory Action1.1 实现WriteDirectory的ActionNode&#xff1a;DIRECTORY_WRITE1.2 将 DIRECTORY_WRITE 包进 WriteDirectory中 2. 重写WriteContent Action2.1 思考重写方案2.2 实现WriteContent的ActionNode2.3 改写WriteContent Act…

UV紫外激光打标机的优缺点是什么

​ UV紫外激光打标机具有以下优点&#xff1a; 1. 精度高&#xff1a;紫外激光打标机的光束质量好&#xff0c;聚焦光斑小&#xff0c;可以实现在各种材料上进行超精细打标。 2. 速度快&#xff1a;由于紫外激光的独特特性&#xff0c;打标速度非常快&#xff0c;提高了生产效…

冷链温湿度监控解决方案,实时监测,助力运输安全

为了确保药品、生鲜等在冷链运输过程中的安全监管,需要对冷链、仓库等环节的温湿度信息进行实时自动检测和记录&#xff0c;有效防范储运过程中可能影响产品质量安全的各类风险&#xff0c;确保储存和运输过程的产品质量。 冷链温湿度监控系统解决方案&#xff0c;利用智能温湿…

【目标跟踪】多相机环视跟踪

文章目录 一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果 四、c 代码五、总结 一、前言 多相机目标跟踪主要是为了实现 360 度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域&#xff0c;要想靠相机实现无…

springboot120企业级工位管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的企业级工位管理系统 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 …