【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言

大家好,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数和代码,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别。

👑欢迎大家订阅本专栏,一起学习RT-DETR👑   

 一、本文介绍

本文给大家带来的改进机制是FasterNet网络,将其用来替换我们的特征提取网络,其旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为空洞卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR     

目录

 一、本文介绍

二、FasterNet原理

2.1 FasterNet的基本原理

2.2 部分卷积

2.3 加速神经网络

三、FasterNet的核心代码

四、手把手教你添加FasterNet网络结构

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 RT-DETR不能打印计算量问题的解决

4.10 可选修改

五、FasterNet的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、FasterNet原理

 论文地址:官方论文地址

 代码地址:官方代码地址


2.1 FasterNet的基本原理

FasterNet是一种高效的神经网络架构,旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。例如,FasterNet在ImageNet-1k数据集上的表现超过了其他模型,如MobileViT-XXS,展现了其在速度和准确度方面的优势。

FasterNet的基本原理可以总结为以下几点:

1. 部分卷积(PConv): FasterNet引入了部分卷积(PConv),这是一种新型的卷积方法,它通过只处理输入通道的一部分来减少计算量和内存访问。

2. 加速神经网络: FasterNet利用PConv的优势,实现了在多种设备上比其他现有神经网络更快的运行速度,同时保持了较高的准确度。

下面为大家展示的是FasterNet的整体架构

它包括四个层次化的阶段,每个阶段由一系列FasterNet块组成,并由嵌入或合并层开头。最后三层用于特征分类。在每个FasterNet块中,PConv层之后是两个点状卷积(PWConv)层。为了保持特征多样性并实现更低的延迟,仅在中间层之后放置了归一化和激活层


2.2 部分卷积

部分卷积(PConv)是一种卷积神经网络中的操作,旨在提高计算效率。它通过只在输入特征图的一部分上执行卷积操作,而非传统卷积操作中的全面应用。这样,PConv可以减少不必要的计算和内存访问,因为它忽略了输入中认为是冗余的部分。这种方法特别适合在资源有限的设备上运行深度学习模型,因为它可以在不牺牲太多性能的情况下,显著降低计算需求。

下面我为大家展示了FasterNet中的部分卷积(PConv)与传统卷积和深度卷积/分组卷积的比较

PConv通过仅对输入通道的一小部分应用滤波器,同时保持其余通道不变,实现了快速和高效的特性提取。PConv的计算复杂度(FLOPs)低于常规卷积,但高于深度卷积/分组卷积,这样在减少计算资源的同时提高了运算性能。


2.3 加速神经网络

加速神经网络主要通过优化计算路径、减少模型大小和复杂性、提高操作效率,以及使用高效的硬件实现等方式来降低模型的推理时间。这些方法包括简化网络层使用更快的激活函数采用量化技术浮点运算转换为整数运算,以及使用特殊的算法来减少内存访问次数等。通过这些策略,可以在不损害模型准确性的前提下,使神经网络能够更快地处理数据和做出预测。


三、FasterNet的核心代码

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
from functools import partial
from typing import List
from torch import Tensor
import copy
import osclass Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x: Tensor) -> Tensor:# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x: Tensor) -> Tensor:# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass MLPBlock(nn.Module):def __init__(self,dim,n_div,mlp_ratio,drop_path,layer_scale_init_value,act_layer,norm_layer,pconv_fw_type):super().__init__()self.dim = dimself.mlp_ratio = mlp_ratioself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.n_div = n_divmlp_hidden_dim = int(dim * mlp_ratio)mlp_layer: List[nn.Module] = [nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),norm_layer(mlp_hidden_dim),act_layer(),nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)]self.mlp = nn.Sequential(*mlp_layer)self.spatial_mixing = Partial_conv3(dim,n_div,pconv_fw_type)if layer_scale_init_value > 0:self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.forward = self.forward_layer_scaleelse:self.forward = self.forwarddef forward(self, x: Tensor) -> Tensor:shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.mlp(x))return xdef forward_layer_scale(self, x: Tensor) -> Tensor:shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))return xclass BasicStage(nn.Module):def __init__(self,dim,depth,n_div,mlp_ratio,drop_path,layer_scale_init_value,norm_layer,act_layer,pconv_fw_type):super().__init__()blocks_list = [MLPBlock(dim=dim,n_div=n_div,mlp_ratio=mlp_ratio,drop_path=drop_path[i],layer_scale_init_value=layer_scale_init_value,norm_layer=norm_layer,act_layer=act_layer,pconv_fw_type=pconv_fw_type)for i in range(depth)]self.blocks = nn.Sequential(*blocks_list)def forward(self, x: Tensor) -> Tensor:x = self.blocks(x)return xclass PatchEmbed(nn.Module):def __init__(self, patch_size, patch_stride, in_chans, embed_dim, norm_layer):super().__init__()self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = nn.Identity()def forward(self, x: Tensor) -> Tensor:x = self.norm(self.proj(x))return xclass PatchMerging(nn.Module):def __init__(self, patch_size2, patch_stride2, dim, norm_layer):super().__init__()self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=patch_size2, stride=patch_stride2, bias=False)if norm_layer is not None:self.norm = norm_layer(2 * dim)else:self.norm = nn.Identity()def forward(self, x: Tensor) -> Tensor:x = self.norm(self.reduction(x))return xclass FasterNet(nn.Module):def __init__(self,in_chans=3,num_classes=1000,embed_dim=96,depths=(1, 2, 8, 2),mlp_ratio=2.,n_div=4,patch_size=4,patch_stride=4,patch_size2=2,  # for subsequent layerspatch_stride2=2,patch_norm=True,feature_dim=1280,drop_path_rate=0.1,layer_scale_init_value=0,norm_layer='BN',act_layer='RELU',fork_feat=True,init_cfg=None,pretrained=None,pconv_fw_type='split_cat',**kwargs):super().__init__()if norm_layer == 'BN':norm_layer = nn.BatchNorm2delse:raise NotImplementedErrorif act_layer == 'GELU':act_layer = nn.GELUelif act_layer == 'RELU':act_layer = partial(nn.ReLU, inplace=True)else:raise NotImplementedErrorif not fork_feat:self.num_classes = num_classesself.num_stages = len(depths)self.embed_dim = embed_dimself.patch_norm = patch_normself.num_features = int(embed_dim * 2 ** (self.num_stages - 1))self.mlp_ratio = mlp_ratioself.depths = depths# split image into non-overlapping patchesself.patch_embed = PatchEmbed(patch_size=patch_size,patch_stride=patch_stride,in_chans=in_chans,embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)# stochastic depth decay ruledpr = [x.item()for x in torch.linspace(0, drop_path_rate, sum(depths))]# build layersstages_list = []for i_stage in range(self.num_stages):stage = BasicStage(dim=int(embed_dim * 2 ** i_stage),n_div=n_div,depth=depths[i_stage],mlp_ratio=self.mlp_ratio,drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],layer_scale_init_value=layer_scale_init_value,norm_layer=norm_layer,act_layer=act_layer,pconv_fw_type=pconv_fw_type)stages_list.append(stage)# patch merging layerif i_stage < self.num_stages - 1:stages_list.append(PatchMerging(patch_size2=patch_size2,patch_stride2=patch_stride2,dim=int(embed_dim * 2 ** i_stage),norm_layer=norm_layer))self.stages = nn.Sequential(*stages_list)self.fork_feat = fork_featself.forward = self.forward_det# add a norm layer for each outputself.out_indices = [0, 2, 4, 6]for i_emb, i_layer in enumerate(self.out_indices):if i_emb == 0 and os.environ.get('FORK_LAST3', None):raise NotImplementedErrorelse:layer = norm_layer(int(embed_dim * 2 ** i_emb))layer_name = f'norm{i_layer}'self.add_module(layer_name, layer)self.apply(self.cls_init_weights)self.init_cfg = copy.deepcopy(init_cfg)if self.fork_feat and (self.init_cfg is not None or pretrained is not None):self.init_weights()self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def cls_init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, (nn.Conv1d, nn.Conv2d)):trunc_normal_(m.weight, std=.02)if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def forward_det(self, x: Tensor) -> Tensor:# output the features of four stages for dense predictionx = self.patch_embed(x)outs = []for idx, stage in enumerate(self.stages):x = stage(x)if self.fork_feat and idx in self.out_indices:norm_layer = getattr(self, f'norm{idx}')x_out = norm_layer(x)outs.append(x_out)return outsif __name__ == "__main__":# Generating Sample imageimage_size = (1, 3, 640, 640)image = torch.rand(*image_size)# Modelmodel = FasterNet()out = model(image)print(len(out))

四、手把手教你添加FasterNet网络结构

 下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第1、2、3、5步即可。

⭐修改过程中大家一定要仔细⭐


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可,其余代码均为未发大家没有不用理会!


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名(此处我的文件里已经添加很多了后期都会发出来,大家没有的不用理会即可)。

        elif m in {自行添加对应的模型即可,下面都是一样的}:m = m(*args)c2 = m.width_list  # 返回通道列表backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):m_ = mm_.backbone = True
else:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:ch = []
if isinstance(c2, list):ch.extend(c2)if len(c2) != 5:ch.insert(0, 0)
else:ch.append(c2)


4.7 修改七 

修改七这里非常要注意,不是文件开头YOLOv8的那predict,是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):"""Perform a forward pass through the model.Args:x (torch.Tensor): The input tensor.profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.batch (dict, optional): Ground truth data for evaluation. Defaults to None.augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): Model's output tensor."""y, dt, embeddings = [], [], []  # outputsfor m in self.model[:-1]:  # except the head partif m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)if len(x) != 5:  # 0 - 5x.insert(0, None)for index, i in enumerate(x):if index in self.save:y.append(i)else:y.append(None)x = x[-1]  # 最后一个输出传给下一层else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)head = self.model[-1]x = head([y[j] for j in head.f], batch)  # head inferencereturn x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):"""Return a YOLO model's FLOPs."""try:model = de_parallel(model)p = next(model.parameters())# stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stridestride = 640im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW formatflops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPsimgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/floatreturn flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPsexcept Exception:return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、FasterNet的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]backbone:# [from, repeats, module, args]- [-1, 1, FasterNet, []]  # 4head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2- [-1, 1, AIFI, [1024, 8]] # 6- [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1- [[-2, -1], 1, Concat, [1]] # 10- [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0- [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4- [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0- [[-1, 12], 1, Concat, [1]]  # 18 cat Y4- [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1- [[-1, 7], 1, Concat, [1]]  # 21 cat Y5- [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1- [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')if __name__ == '__main__':model = RTDETR('替换你想要运行的yaml文件')# model.load('') # 可以加载你的版本预训练权重model.train(data=r'替换你的数据集地址即可',cache=False,imgsz=640,epochs=72,batch=4,workers=0,device='0',project='runs/RT-DETR-train',name='exp',# amp=True)


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645199.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

圈子论坛社交实名制系统---H5小程序APP,三端源码交付,允许二开!PHP系统uni书写!

圈子系统是一种社会化网络平台&#xff0c;它的核心是以用户为中心&#xff0c;围绕用户的兴趣、爱好、经历和职业等因素&#xff0c;将具有相同特质的个体聚集起来&#xff0c;形成具有共同话题和兴趣的社交圈子。这样的系统旨在帮助用户拓宽社交范围&#xff0c;提升社交效率…

封装 element el-date-picker时间选择区间

基于el-date-picker 处理满足项目需求。&#xff08;&#xff1a;最多选择7天&#xff09; 效果&#xff1a; 1 大于当前时间的以后日期禁选。2 选中时间的前后七天可选 &#xff08;最多可查询7天数据&#xff09;3 <template><section class"warning-contai…

FPGA硬件架构——具体型号是xc7k325tffg676-2为例

1.共如下图14个时钟域&#xff0c;XmYn(按坐标理解) 2.IOB(IOB为可编程输入输出单元,当然在普通Bank上的IOB附近还有很多时钟资源&#xff0c;例如PLL&#xff0c;MMCM资源。), 2.1 FPGA的Bank分为HP Bank和HR Bank&#xff0c;二者对电压的要求范围不同&#xff0c;HR支持更大…

2023龙信杯wp

打了好像70多分&#xff0c;没拿奖&#xff0c;因为一些众所周知的原因&#xff0c;复盘间隔时间太长了没什么印象了已经 案情简介 2023年9月&#xff0c;某公安机关指挥中心接受害人报案:通过即时通讯工具添加认识一位叫“周微”的女人&#xff0c;两人谈论甚欢&#xff0c;确…

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者&#xff1a;顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型&#xff08;Large language models,LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有 self-attention 的编码器和解码器组…

HTTP动态代理的原理及其对网络性能的影响

HTTP动态代理是一种通过代理服务器来转发HTTP请求和响应数据的网络技术&#xff0c;它可以优化网络性能、提高网络安全性&#xff0c;并解决跨域请求的问题。本文将详细介绍HTTP动态代理的原理及其对网络性能的影响。 一、HTTP动态代理的原理 HTTP动态代理的基本原理是在客户…

【数据结构四】栈与Stack详解

目录 栈与Stack 1.实现一个自己的栈 2.Stack的基本使用 3.栈的一些oj题训练 4.栈&#xff0c;虚拟机栈&#xff0c;栈帧的区别 栈与Stack 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶…

opencv#34 边缘检测(二)

Laplacian(拉普拉斯)算子 前面介绍的Sobel算子和Scharr算子存在的问题: 1.要分别计算两个方向&#xff08;x,y)的边缘&#xff0c;之后将两方向的边缘进行叠加。 2.边缘与方向相关性较大。当我们通过Sobel算子提取x方向检测时&#xff0c;它所能够检测到的边缘都是一个沿着y…

差分进化算法求解基于移动边缘计算 (MEC) 的无线区块链网络的联合挖矿决策和资源分配(提供MATLAB代码)

一、优化模型介绍 在所研究的区块链网络中&#xff0c;优化的变量为&#xff1a;挖矿决策&#xff08;即 m&#xff09;和资源分配&#xff08;即 p 和 f&#xff09;&#xff0c;目标函数是使所有矿工的总利润最大化。问题可以表述为&#xff1a; max ⁡ m , p , f F miner …

gin中使用限流中间件

限流又称为流量控制&#xff08;流控&#xff09;&#xff0c;通常是指限制到达系统的并发请求数&#xff0c;本文列举了常见的限流策略&#xff0c;并以gin框架为例演示了如何为项目添加限流组件。 限流 限流又称为流量控制&#xff08;流控&#xff09;&#xff0c;通常是指…

如何在美国硅谷高防服务器上运行自定义的脚本和应用程序

在美国硅谷高防服务器上运行自定义的脚本和应用程序需要一定的技术和知识。下面我们将介绍一些关键步骤&#xff0c;帮助您顺利地在这些服务器上运行自定义应用程序和脚本。 确保您有对服务器的访问权限&#xff0c;并且已经通过SSH等方式连接到服务器。接下来&#xff0c;您可…

不就业,纯兴趣,应该自学C#还是JAVA?

不就业&#xff0c;纯兴趣&#xff0c;应该自学C#还是JAVA? 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「JAVA的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff…

微信小程序(十四)分包和分包预加载

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.分包的配置 2.分包预加载的写法 先说说为什么需要分包&#xff1a; 小程序追求小而快&#xff0c;主包的大小控制是小程序上线的硬性要求&#xff0c;分包有利于小程序优化加载速度 分包的注意事项&#xff1a; 单个分…

网络原理-初识(1)

目录 网络发展史 独立模式 网络互连 局域网LAN 广域网WAN 网络通信基础 IP地址 概念 格式 端口 概念 格式 认识协议 概念 作用 五元组 网络发展史 独立模式 独立模式:计算机之间相互独立; 网络互连 随着时代的发展,越来越需要计算机之间相互通信,共享软件和数…

【AI的未来 - AI Agent系列】【MetaGPT】6. 用ActionNode重写技术文档助手

文章目录 0. 前置推荐阅读1. 重写WriteDirectory Action1.1 实现WriteDirectory的ActionNode&#xff1a;DIRECTORY_WRITE1.2 将 DIRECTORY_WRITE 包进 WriteDirectory中 2. 重写WriteContent Action2.1 思考重写方案2.2 实现WriteContent的ActionNode2.3 改写WriteContent Act…

UV紫外激光打标机的优缺点是什么

​ UV紫外激光打标机具有以下优点&#xff1a; 1. 精度高&#xff1a;紫外激光打标机的光束质量好&#xff0c;聚焦光斑小&#xff0c;可以实现在各种材料上进行超精细打标。 2. 速度快&#xff1a;由于紫外激光的独特特性&#xff0c;打标速度非常快&#xff0c;提高了生产效…

冷链温湿度监控解决方案,实时监测,助力运输安全

为了确保药品、生鲜等在冷链运输过程中的安全监管,需要对冷链、仓库等环节的温湿度信息进行实时自动检测和记录&#xff0c;有效防范储运过程中可能影响产品质量安全的各类风险&#xff0c;确保储存和运输过程的产品质量。 冷链温湿度监控系统解决方案&#xff0c;利用智能温湿…

【目标跟踪】多相机环视跟踪

文章目录 一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果 四、c 代码五、总结 一、前言 多相机目标跟踪主要是为了实现 360 度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域&#xff0c;要想靠相机实现无…

springboot120企业级工位管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的企业级工位管理系统 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 …

SpringMVC 注解配置SpringMVC

文章目录 1、创建初始化类&#xff0c;代替web.xml2、创建SpringConfig配置类&#xff0c;代替spring的配置文件3、创建WebConfig配置类&#xff0c;代替SpringMVC的配置文件4、测试功能 使用配置类和注解代替web.xml和SpringMVC配置文件的功能 1、创建初始化类&#xff0c;代替…