1.RelateDTO
package com.example.entity;/*** 协同过滤算法*/
public class RelateDTO {/** 用户id */private Integer useId;/** 商品id */private Integer goodsId;/** 指数 */private Integer index;public RelateDTO(Integer useId, Integer goodsId, Integer index) {this.useId = useId;this.goodsId = goodsId;this.index = index;}public Integer getUseId() {return useId;}public void setUseId(Integer useId) {this.useId = useId;}public Integer getGoodsId() {return goodsId;}public void setGoodsId(Integer goodsId) {this.goodsId = goodsId;}public Integer getIndex() {return index;}public void setIndex(Integer index) {this.index = index;}
}
2.CoreMath
package com.example.utils.recommend;import cn.hutool.core.collection.CollectionUtil;
import com.example.entity.RelateDTO;import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import java.util.stream.IntStream;/*** 基于用户的协同过滤的核心算法*/
public class CoreMath {/*** 计算相关系数并排序*/public static Map<Integer, Double> computeNeighbor(Integer key, Map<Integer, List<RelateDTO>> map, int type) {Map<Integer, Double> distMap = new TreeMap<>();List<RelateDTO> userItems = map.get(key);if (CollectionUtil.isNotEmpty(userItems)) {map.forEach((k, v) -> {//排除此用户if (!k.equals(key)) {//关系系数double coefficient = relateDist(v, userItems, type);//关系距离double distance = Math.abs(coefficient);distMap.put(k, distance);}});}return distMap;}/*** 计算两个序列间的相关系数*/private static double relateDist(List<RelateDTO> xList, List<RelateDTO> yList, int type) {List<Integer> xs = new ArrayList<>();List<Integer> ys = new ArrayList<>();xList.forEach(x -> yList.forEach(y -> {if (type == 0) {if (x.getGoodsId().equals(y.getGoodsId())) {xs.add(x.getIndex());ys.add(y.getIndex());}} else {if (x.getUseId().equals(y.getUseId())) {xs.add(x.getIndex());ys.add(y.getIndex());}}}));return getRelate(xs, ys);}/*** 方法描述: 皮尔森(pearson)相关系数计算* @param xs x集合* @param ys y集合* @Return {@link double}*/public static double getRelate(List<Integer> xs, List<Integer> ys) {int n = xs.size();//至少有两个元素if (n < 2) {return 0D;}double Ex = xs.stream().mapToDouble(x -> x).sum();double Ey = ys.stream().mapToDouble(y -> y).sum();double Ex2 = xs.stream().mapToDouble(x -> Math.pow(x, 2)).sum();double Ey2 = ys.stream().mapToDouble(y -> Math.pow(y, 2)).sum();double Exy = IntStream.range(0, n).mapToDouble(i -> xs.get(i) * ys.get(i)).sum();double numerator = Exy - Ex * Ey / n;double denominator = Math.sqrt((Ex2 - Math.pow(Ex, 2) / n) * (Ey2 - Math.pow(Ey, 2) / n));if (denominator == 0) {return 0D;}return numerator / denominator;}}
3.UserCF
package com.example.utils.recommend;import cn.hutool.core.collection.CollectionUtil;
import com.example.entity.RelateDTO;import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;public class UserCF {/*** 方法描述: 推荐商品id列表** @param userId 当前用户* @param list 用户商品评分数据* @return {@link List<Integer>}*/public static List<Integer> recommend(Integer userId, List<RelateDTO> list) {// 按用户分组Map<Integer, List<RelateDTO>> userMap = list.stream().collect(Collectors.groupingBy(RelateDTO::getUseId));// 获取其他用户与当前用户的关系值Map<Integer, Double> userDisMap = CoreMath.computeNeighbor(userId, userMap, 0);if (CollectionUtil.isEmpty(userDisMap)) {return Collections.emptyList();}// 获取关系最近的用户double maxValue = Collections.max(userDisMap.values());Set<Integer> userIds = userDisMap.entrySet().stream().filter(e -> e.getValue() == maxValue).map(Map.Entry::getKey).collect(Collectors.toSet());// 取关系最近的用户Integer nearestUserId = userIds.stream().findAny().orElse(null);if (nearestUserId == null) {return Collections.emptyList();}// 最近邻用户看过商品列表List<Integer> neighborItems = userMap.get(nearestUserId).stream().map(RelateDTO::getGoodsId).collect(Collectors.toList());// 指定用户看过商品列表List<Integer> userItems = userMap.get(userId).stream().map(RelateDTO::getGoodsId).collect(Collectors.toList());// 找到最近邻看过,但是该用户没看过的商品neighborItems.removeAll(userItems);return neighborItems;}}
4.service实现类实现该操作
/*** 基于用户的协同过滤算法实现* num:返回的数据的个数*/
public List<Goods> recommend(Integer num) {// 定义一个存储每个商品和每个用户关系的ListList<RelateDTO> data = new ArrayList<>();// 定义一个存储最后返回给前端的商品ListList<Goods> result = new ArrayList<>();// 判断用户登录情况Account currentUser = TokenUtils.getCurrentUser();if (ObjectUtil.isEmpty(currentUser)) {// 若用户未登录,随机推荐10个商品result = getRandomGoods(result,num);return result;}// 用户的哪些行为可以认为他跟商品产生了关系:收藏、加入购物车、下单、评论、评分等// 1. 获取所有的收藏信息List<Collect> allCollects = collectMapper.selectAll(null);// 2. 获取所有的购物车信息List<Cart> allCarts = cartMapper.selectAll(null);// 3. 获取所有的订单信息List<Orders> allOrders = ordersMapper.selectAllOKOrders();// 4. 获取所有的评分信息:5分制,只查询评分大于等于3的评论List<Comment> allComments = commentMapper.selectAllOKComments();// 5. 获取所有的用户信息List<User> allUsers = userMapper.selectAll(null);// 6. 获取所有的商品信息List<Goods> allGoods = goodsMapper.selectAll(null);// 开始计算每个商品和每个用户之间的关系数据for (Goods goods : allGoods) {Integer goodsId = goods.getId();for (User user : allUsers) {Integer userId = user.getId();int index = 1;// 1. 判断该用户有没有收藏该商品,收藏的权重我们给:1Optional<Collect> collectOptional = allCollects.stream().filter(x -> x.getGoodsId().equals(goodsId) && x.getUserId().equals(userId)).findFirst();if (collectOptional.isPresent()) {index += 1;}// 2. 判断该用户有没有给该商品加入购物车,加入购物车的权重我们给:2Optional<Cart> cartOptional = allCarts.stream().filter(x -> x.getGoodsId().equals(goodsId) && x.getUserId().equals(userId)).findFirst();if (cartOptional.isPresent()) {index += 2;}// 3. 判断该用户有没有对该商品下过单(已完成的订单),订单的权重我们给:3Optional<Orders> ordersOptional = allOrders.stream().filter(x -> x.getGoodsId().equals(goodsId) && x.getUserId().equals(userId)).findFirst();if (ordersOptional.isPresent()) {index += 3;}// 4. 判断该用户有没有对该商品评分过 注:商品的评分与订单绑定删除,因此不会index减为负数// 1分:-3;2分;-2;三分:0;4分:2;5分:3Optional<Comment> commentOptional = allComments.stream().filter(x -> x.getGoodsId().equals(goodsId) && x.getUserId().equals(userId)).findFirst();if (commentOptional.isPresent()) {if (commentOptional.get().getScore() == 1){index -= 3;} else if(commentOptional.get().getScore() == 2){index -= 2;} else if(commentOptional.get().getScore() == 4){index += 2;} else if(commentOptional.get().getScore() == 5){index += 3;}}if (index > 1) {RelateDTO relateDTO = new RelateDTO(userId, goodsId, index);data.add(relateDTO); // 将遍历获得的数据添加到data里面}}}// 数据准备结束后,就把这些数据一起喂给这个推荐算法List<Integer> goodsIds = UserCF.recommend(currentUser.getId(), data);// 把商品id转换成商品:推荐算法获取的商品result = goodsIds.stream().map(goodsId -> allGoods.stream().filter(x -> x.getId().equals(goodsId)).findFirst().orElse(null)).limit(num).collect(Collectors.toList());// 若推荐结果为空,随机给它推荐10个if (CollectionUtil.isEmpty(result)) {return getRandomGoods(result,num);}// 若推荐结果小于10个,随机增加几个,使个数为10个if (result.size() < num) {int count = num - result.size();// 随机获取几个商品result = getRandomGoods(result,count);}return result;
}/*** 若推荐结果不够,随机添加几个数据中没有的商品*/
private List<Goods> getRandomGoods(List<Goods> result,int num) {int length=result.size();List<Goods> goods = goodsMapper.selectAll(null);for (int i = 0; result.size()<length+num; i++) {boolean flag=false;int index = new Random().nextInt(goods.size());for(int j=0;j<result.size();j++){ // 排除重复if(goods.get(index).getId().equals(result.get(j).getId())){flag=true; // 若随机产生的商品已存在数组中,则排除}}if(flag==false){result.add(goods.get(index));}}return result;
}
可以点个免费的赞吗!!!